Skip to main content
Log in

Passive and Semiconducting Properties Assessment of Commercially Pure Tantalum in Hank’s Physiological Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, various electrochemical measurements were used to evaluate the passive and semiconducting properties of commercially pure tantalum (Ta) in Hank’s physiological solution at 310 K (37 °C). Potentiodynamic polarization and electrochemical impedance spectroscopy results show that the passivation of pure Ta immersed in Hank’s physiological solution improves over time. Mott–Schottky (M–S) tests indicate that the passive layers of pure Ta in Hank’s physiological solution behave as n-type semiconductors and longer immersion times do not lead to any inversion of semiconducting behavior. Additionally, M–S tests show that as the immersion time increases, the donor density of the passive layer decreases. Finally, scanning electron microscope micrographs and energy-dispersive spectroscopy results reveal that Ta is less likely to experience significant pitting or buildup of undesirable corrosion products after longer immersion times in this physiological solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.B. Park and R.S. Lakes, Biomaterials: An Introduction, Springer, New York, 2007

    Google Scholar 

  2. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R, 2015, 87, p 1–57

    Article  Google Scholar 

  3. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903

    Article  Google Scholar 

  4. J.R. Davies (ed.), Metallic materials, in Handbook of Materials for Medical Devices (ASM International, Materials Park, 2003), p 21–50

  5. U.O. Hafeli, M.C. Warburton, and U. Landau, Electrodeposition of Radioactive Rhenium onto Stents to Prevent Restenosis, Biomaterials, 1998, 19, p 925–933

    Article  Google Scholar 

  6. B. Nowak, J.M. Meyer, T. Goergen, D. Fluehs, S. Block, R.W. Guenther, H. Hoecker, and U. Buell, Dosimetry of a 188rhenium-Labeled Self-Expanding Stent for Endovascular Brachytherapy in Peripheral Arteries, Cardiovasc. Radiat. Med., 2001, 2, p 246–253

    Article  Google Scholar 

  7. J. Black, Biologic Performance of Tantalum, Clin. Mater., 1994, 16, p 167–173

    Article  Google Scholar 

  8. V.K. Balla, S. Banerjee, S. Bose, and A. Bandyopadhyay, Direct Laser Processing of a Tantalum Coating on Titanium for Bone Replacement Structures, Acta Biomater., 2010, 6, p 2329–2334

    Article  Google Scholar 

  9. D.M. Findlay, K. Welldon, G.J. Atkin, D.W. Howie, A.C.W. Zannettino, and D. Bobyn, The Proliferation and Phenotypic Expression of Human Osteoblasts on Tantalum Metal, Biomaterials, 2004, 25, p 2215–2227

    Article  Google Scholar 

  10. B.R. Levine, S. Sporer, R.A. Poggie, C.J.D. Valle, and J.J. Jacobs, Experimental and Clinical Performance of Porous Tantalum in Orthopedic Surgery, Biomaterials, 2006, 27, p 4671–4681

    Article  Google Scholar 

  11. J.D. Bobyn, K. Toh, S.A. Hacking, M. Tanzer, and J.J. Krygier, Tissue Response to Porous Tantalum Acetabular Cups, J. Arthroplasty, 1999, 14, p 347–354

    Article  Google Scholar 

  12. J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, and J.J. Krygier, Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial, J. Bone Joint Surg., 1999, 81B, p 907–914

    Article  Google Scholar 

  13. J.D. Bobyn, R.A. Poggie, J.J. Krygier, D.G. Lewallen, A.D. Hanssen, R.J. Lewis et al., Clinical Validation of a Structural Porous Tantalum Biomaterial for Adult Reconstruction, J. Bone Joint Surg., 2004, 86, p 123–129

    Article  Google Scholar 

  14. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, and R.A. Poggie, Structure, Metallurgy, and Mechanical Properties of a Porous Tantalum Foam, J. Biomed. Mater. Res., 2001, 58, p 180–187

    Article  Google Scholar 

  15. S. Dittrick, V.K. Balla, S. Bose, and A. Bandyopadhyay, Wear Performance of Laser Processed Tantalum Coatings, Mater. Sci. Eng. C, 2011, 31, p 1832–1835

    Article  Google Scholar 

  16. P.S. Nebosky, S.R. Schmid, and M.A. Selles, The Springback Characteristics of a Porous Tantalum Sheet-Metal, J. Manuf. Sci. Eng., 2011, 133(6), p 061022

    Article  Google Scholar 

  17. D.D. Macdonald, Passive Films: Nature’s Exquisitely Nano-Engineered Protection System, Curr. Appl. Phys., 2004, 4, p 129–132

    Article  Google Scholar 

  18. D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772

    Article  Google Scholar 

  19. E. Sikora, J. Sikora, and D.D. Macdonald, A New Method for Estimating the Diffusivities of Vacancies in Passive Films, Electrochim. Acta, 1996, 41, p 783–789

    Article  Google Scholar 

  20. A. Fattah-alhosseini, A.R. Ansari, Y. Mazaheri, and M.K. Keshavarz, Effect of Immersion Time on the Passive and Electrochemical Response of Annealed and Nano-Grained Commercial Pure Titanium in Ringer’s Physiological Solution at 37 °C, Mater. Sci. Eng. C, 2017, 71, p 771–779

    Article  Google Scholar 

  21. M.-D. Bermúdez, F.J. Carrión, G. Martínez-Nicolás, and R. López, Erosion–Corrosion of Stainless Steels, Titanium, Tantalum and Zirconium, Wear, 2005, 258, p 693–700

    Article  Google Scholar 

  22. J. Xu, W. Hu, S. Xu, P. Munroe, and Z.-H. Xie, Electrochemical Properties of a Novel β-Ta2O5 Nanoceramic Coating Exposed to Simulated Body Solutions, ACS Biomater. Sci. Eng., 2016, 2, p 73–89

    Article  Google Scholar 

  23. L.L. Liu, J. Xu, X. Lu, P. Munroe, and Z.-H. Xie, Electrochemical Corrosion Behavior of Nanocrystalline β-Ta Coating for Biomedical Applications, ACS Biomater. Sci. Eng., 2016, 2, p 579–594

    Article  Google Scholar 

  24. G.T. Burstein, A Hundred Years of Tafel’s Equation: 1905–2005, Corros. Sci., 2005, 47, p 2858–2870

    Article  Google Scholar 

  25. F.R. Attarzadeh, N. Attarzadeh, S. Vafaeian, and A. Fattah-Alhosseini, Effect of pH on the Electrochemical Behavior of Tantalum in Borate Buffer Solutions, J. Mater. Eng. Perform., 2016, 25, p 4199–4209

    Article  Google Scholar 

  26. J. Macdonald, W. Johnson, and J. Macdonald, Theory in Impedance Spectroscopy, Wiley, New York, 1987

    Google Scholar 

  27. A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580

    Article  Google Scholar 

  28. A. Fattah-alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928

    Article  Google Scholar 

  29. M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, Ch. 22, The Kramers–Kronig Relations, Wiley, Hoboken, 2008

    Book  Google Scholar 

  30. A. Fattah-alhosseini, S.O. Gashti, and M.K. Keshavarz, Effect of Film Formation Potential on Passive Behavior of Ultra-Fine Grained 1050 Al Alloy Fabricated Via ARB Process, J. Mater. Eng. Perform., 2016, 25, p 1683–1689

    Article  Google Scholar 

  31. A. Fattah-alhosseini, Passivity of AISI, 321 Stainless Steel in 0.5 M H2SO4 Solution Studied by Mott–Schottky Analysis in Conjunction with the Point Defect Model, Arab. J. Chem., 2016, 9, p S1342–S1348

    Article  Google Scholar 

  32. W. Wang, F. Mohammadi, and A. Alfantazi, Corrosion Behaviour of Niobium in Phosphate Buffered Saline Solutions with Different Concentrations of Bovine Serum Albumin, Corros. Sci., 2012, 57, p 11–21

    Article  Google Scholar 

  33. J.W. Schultze and M.M. Lohrengel, Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research, Electrochim. Acta, 2000, 45, p 2499–2513

    Article  Google Scholar 

  34. J.W. Schultze, M. Pilaski, M.M. Lohrengel, and U. Konig, Single, Crystal Experiments on Grains of Polycrystalline Materials: Oxide Formation on Zr and Ta, Faraday Discuss., 2002, 121, p 211–227

    Article  Google Scholar 

  35. W.J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara et al., Conduction and Valence Band Positions of Ta2O5, TaOn, Ta3N5 by UPS and Electrochemical Methods, J. Phys. Chem. B, 2003, 107, p 1798–1803

    Article  Google Scholar 

  36. L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108

    Article  Google Scholar 

  37. M. Khanuja, H. Sharma, B.R. Mehta, and S.M. Shivaprasad, XPS Depth-Profile of the Suboxide Distribution at the Native Oxide/Ta Interface, J. Electron Spectrosc. Relat. Phenomena, 2009, 169, p 41–45

    Article  Google Scholar 

  38. R.M. Fleming, D.V. Lang, C.D.W. Jones, M.L. Steigerwald, D.W. Murphy, G.B. Alers, Y.-H. Wong, R.B. Van Dover, J.R. Kwo, and A.M. Sergent, Defect Dominated Charge Transport in Amorphous Ta2O5 Thin Films, J. Appl. Phys., 2000, 88, p 850–862

    Article  Google Scholar 

  39. A.D. Paola, Semiconducting Properties of Passive Films on Stainless Steels, Electrochim. Acta, 1989, 34(2), p 203–210

    Article  Google Scholar 

  40. R.A. Silva, M. Walls, B. Rondot, M. Da Cunha Belo, and R. Guidoin, Electrochemical and Microstructural Studies of Tantalum and its Oxide Films for Biomedical Applications in Endovascular Surgery, J. Mater. Sci. Mater. Med., 2002, 13, p 495–500

    Article  Google Scholar 

  41. V.D. Jović and B.M. Jović, The Influence of the Conditions of the ZrO2 Passive Film Formation on its Properties in 1 M NaOH, Corros. Sci., 2008, 50, p 3063–3069

    Article  Google Scholar 

  42. M. Schneider, S. Schroth, J. Schilm, and A. Michaelis, Micro-EIS of Anodic Thin Oxide Films on Titanium for Capacitor Applications, Electrochim. Acta, 2009, 54, p 2663–2671

    Article  Google Scholar 

  43. R. Cabrera-Sierra, J. Vazquez-Arenas, S. Cardoso, R.M. Luna-Sanchez, M.A. Trejo, J. Marın-Cruz, and J.M. Hallen, Analysis of the Formation of Ta2O5 Passive Films in Acid Media Through Mechanistic Modeling, Electrochim. Acta, 2011, 56, p 8040–8047

    Google Scholar 

  44. R. Cabrera-Sierra, J.M. Hallen, J. Vazquez-Arenas, G. Vázquez, and I. González, EIS Characterization of Tantalum and Niobium Oxide Films Based on a Modification of the Point Defect Model, J. Electroanal. Chem., 2010, 638, p 51–58

    Article  Google Scholar 

  45. J. D. Sloppy, Anodization Mechanism and Properties of Bi-Layer Tantalum Oxide Formed in Phosphoric Acid, PhD thesis, 2009, The Pennsylvania State University, USA

  46. D.D. Macdonald, On the Existence of Our Metals-Based Civilization: I. Phase-Space Analysis, J. Electrochem. Soc., 2006, 153, p B213–B224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-alhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Pourmahmoud, M. Passive and Semiconducting Properties Assessment of Commercially Pure Tantalum in Hank’s Physiological Solution. J. of Materi Eng and Perform 27, 116–123 (2018). https://doi.org/10.1007/s11665-017-3108-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3108-6

Keywords

Navigation