Skip to main content
Log in

Effect of pH on the Electrochemical Behavior of Tantalum in Borate Buffer Solutions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, various electrochemical methods were used to investigate the electrochemical behavior of tantalum in borate buffer solutions of various pH values, ranging from 9.0 to 6.5. Potentiodynamic polarization curves revealed that tantalum showed excellent passive behavior in borate buffer solutions. The potentiodynamic polarization and electrochemical impedance spectroscopy results showed that the passive film formed on tantalum offered its best protective behavior when the pH is 8.0, with the passivity undergoing a drastic change as the pH moved toward higher values. The semiconductive behavior of the passive films formed on tantalum was investigated by employing Mott-Schottky analysis in conjunction with a point defect model. The results indicated that the passive film exhibited n-type semiconductive behavior and that donor densities were in the range of 1.958-7.242 × 1020 cm−3. Moreover, this analysis showed that the donor density and flat band potential were quite sensitive to the pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.W. Revie and H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. Chapter 27, 4th ed., Wiley, New Jersey, 2008

    Book  Google Scholar 

  2. T. Kokubo, H.-M. Kim, and M. Kawashita, Novel Bioactive Materials with Different Mechanical Properties, Biomaterials, 2003, 24, p 2161–2175

    Article  Google Scholar 

  3. H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.-M. Kim, and T. Kokubo, Bonding of Alkali- and Heat-Treated Tantalum Implants to Bone, J. Biomed. Mater. Res., 2000, 53, p 28–35

    Article  Google Scholar 

  4. T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato, and T. Nakamura, Enhancement of Bonding Strength by Graded Structure at Interface Between Apatite Layer and Bioactive Tantalum Metal, J. Mater. Sci. Mater. Med., 2002, 13, p 651–655

    Article  Google Scholar 

  5. T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato, and T. Nakamura, Mechanism of Bonelike Apatite Formation on Bioactive Tantalum Metal in a Simulated Body Fluid, Biomaterials, 2002, 23, p 827–832

    Article  Google Scholar 

  6. H. Gao, Y.F. Jie, Z.Q. Wang, H. Wan, L. Gong, R.C. Lu, Y.K. Xue, D. Li, H.Y. Wang, L.N. Hao, and Y.Z. Zhang, Bioactive Tantalum Metal Prepared by Micro-arc Oxidation and NaOH Treatment, J. Mater. Chem. B, 2014, 2, p 1216–1224

    Article  Google Scholar 

  7. M. Krishnan, J.W. Nalaskowski, and L.M. Cook, Chemical Mechanical Planarization: Slurry Chemistry, Materials, and Mechanisms, Chem. Rev., 2010, 110, p 178–204

    Article  Google Scholar 

  8. A. Robin, Corrosion Behaviour of Tantalum in Sodium Hydroxide Solutions, J. Appl. Electrochem., 2003, 33, p 37–42

    Article  Google Scholar 

  9. D.D. Macdonald, Reflections on the History of Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 51, p 1376–1388

    Article  Google Scholar 

  10. B.-Y. Chang and S.-M. Park, Electrochemical Impedance Spectroscopy, Annu. Rev. Anal. Chem., 2010, 3, p 207–229

    Article  Google Scholar 

  11. D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772

    Article  Google Scholar 

  12. K. Rajeshwar, Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry, Encyclopedia of Electrochemistry, Chapter 1, Vol 6, A.J. Bard, M. Stratmann, and S. Licht, Ed., Wiley, New Jersey, 2002, p 9

    Google Scholar 

  13. R. Cabrera-Sierra, J. Vazquez-Arenas, S. Cardoso, R.M. Luna-Sánchez, M.A. Trejo, J. Marín-Cruz, and J.M. Hallen, Analysis of the Formation of Ta2O5 Passive Films in Acid Media Through Mechanistic Modeling, Electrochim. Acta, 2011, 56, p 8040–8047

    Google Scholar 

  14. R. Cabrera-Sierra, J.M. Hallen, J. Vazquez-Arenas, G. Vázquez, and I. González, EIS Characterization of Tantalum and Niobium Oxide Films Based on a Modification of the Point Defect Model, J. Electroanal. Chem., 2010, 638, p 51–58

    Article  Google Scholar 

  15. R.A. Silva, M. Walls, B. Rondot, M. Da Cunha Belo, and R. Guidoin, Electrochemical and Microstructural Studies of Tantalum and its Oxide Films for Biomedical Applications in Endovascular Surgery, J. Mater. Sci. Mater. Med., 2002, 13, p 495–500

    Article  Google Scholar 

  16. R.A. Silva, I.P. Silva, and B. Rondot, Effect of Surface Treatments on Anodic Oxide Film Growth and Electrochemical Properties of Tantalum Used for Biomedical Applications, J. Biomater. Appl., 2006, 21, p 93–103

    Article  Google Scholar 

  17. G.T. Burstein, A Hundred Years of Tafel’s Equation: 1905–2005, Corros. Sci., 2005, 47, p 2858–2870

    Article  Google Scholar 

  18. M. Anik and K. Osseo-Asare, Effect of pH on the Anodic Behavior of Tungsten, J. Electrochem. Soc., 2002, 149, p B224–B233

    Article  Google Scholar 

  19. F.M. Al-Kharafi and W.A. Badawy, Electrochemical Behaviour of Vanadium in Aqueous Solutions of Different pH, Electrochim. Acta, 1997, 42, p 579–586

    Article  Google Scholar 

  20. K.M. Ismail and W.A. Badawy, Electrochemical and XPS Investigations of Cobalt in KOH Solutions, J. Appl. Electrochem., 2000, 30, p 1303–1311

    Article  Google Scholar 

  21. W.A. Badawy and F.M. Al-Kharafi, Corrosion and Passivation Behaviors of Molybdenum in Aqueous Solutions of Different pH, Electrochim. Acta, 1998, 44, p 693–702

    Article  Google Scholar 

  22. W.A. Badawy and F.M. Al-Kharafi, The Electrochemical Behaviour of Naturally Passivated Hafnium in Aqueous Solutions of Different pH, J. Mater. Sci., 1999, 34, p 2483–2491

    Article  Google Scholar 

  23. A. Kolics, A.S. Besing, P. Baradlai, R. Haasch, and A. Wieckowski, Effect of pH on Thickness and Ion Content of the Oxide Film on Aluminum in NaCl Media, J. Electrochem. Soc., 2001, 148, p B251–B259

    Article  Google Scholar 

  24. O. Imantalab and A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, J. Mater. Eng. Perform., 2015, 24, p 2579–2585

    Article  Google Scholar 

  25. A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580

    Article  Google Scholar 

  26. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element Parameters, Electrochim. Acta, 2010, 55, p 6218–6227

    Article  Google Scholar 

  27. A. Ehsani, M. Nasrollahzadeh, M.G. Mahjani, R. Moshrefi, and H. Mostaanzadeh, Electrochemical and Quantum Chemical Investigation of Inhibitory of 1,4-Ph(OX)2(Ts)2 on Corrosion of 1005 Aluminum Alloy in Acidic Medium, J. Ind. Eng. Chem., 2014, 20, p 4363–4370

    Article  Google Scholar 

  28. M. Schönleber, D. Klotz, and E. Ivers-Tiffée, A Method for Improving the Robustness of Linear Kramers–Kronig Validity Tests, Electrochim. Acta, 2014, 161, p 20–27

    Article  Google Scholar 

  29. B.A. Boukamp, Practical Application of the Kramers–Kronig Transformation on Impedance Measurements in Solid State Electrochemistry, Solid State Ion., 1993, 62, p 131–141

    Article  Google Scholar 

  30. S. Fajardo, D.M. Bastidas, M. Criado, and J.M. Bastidas, Electrochemical Study on the Corrosion Behaviour of a New Low-Nickel Stainless Steel in Carbonated Alkaline Solution in the Presence of Chlorides, Electrochim. Acta, 2014, 129, p 160–170

    Article  Google Scholar 

  31. J. Xu, W. Hu, S. Xu, P. Munroe, and Z.-H. Xie, Electrochemical Properties of a Novel β-Ta2O5 Nanoceramic Coating Exposed to Simulated Body Solutions, ACS Biomater. Sci. Eng., 2016, 2, p 73–89

    Article  Google Scholar 

  32. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, and J.H. Sluyters, The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176, p 275–295

    Article  Google Scholar 

  33. C.H. Hsu and F. Mansfeld, Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance, Corrosion, 2001, 57, p 747–748

    Article  Google Scholar 

  34. B.D. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films: I. Theory, J. Electrochem. Soc., 2010, 157, p C452–C457

    Article  Google Scholar 

  35. W. Wang and A. Alfantazi, An Electrochemical Impedance Spectroscopy and Polarization Study of the Role of Crystallographic Orientation on Electrochemical Behavior of Niobium, Electrochim. Acta, 2014, 131, p 79–88

    Article  Google Scholar 

  36. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films: II. Applications, J. Electrochem. Soc., 2010, 157, p C458–C463

    Article  Google Scholar 

  37. E. Sikora and D.D. Macdonald, Defining the Passive State, Solid State Ion., 1997, 94, p 141–150

    Article  Google Scholar 

  38. W. Wang, F. Mohammadi, and A. Alfantazi, Corrosion, Behaviour of Niobium in Phosphate Buffered Saline Solutions with Different Concentrations of Bovine Serum Albumin, Corros. Sci., 2012, 57, p 11–21

    Article  Google Scholar 

  39. J.W. Schultze and M.M. Lohrengel, Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research, Electrochim. Acta, 2000, 45, p 2499–2513

    Article  Google Scholar 

  40. J.W. Schultze, M. Pilaski, M.M. Lohrengel, and U. König, Single, Crystal Experiments on Grains of Polycrystalline Materials: Oxide Formation on Zr and Ta, Faraday Discuss., 2002, 121, p 211–227

    Article  Google Scholar 

  41. E. Sikora, J. Sikkora, and D.D. Macdonald, A New Method for Estimating the Diffusivities of Vacancies in Passive Films, Electrochim. Acta, 1996, 41, p 783–789

    Article  Google Scholar 

  42. W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods, J. Phys. Chem. B, 2003, 107, p 1798–1803

    Article  Google Scholar 

  43. F. Di Quarto, C. Gentile, S. Piazza, and C. Sunseri, A Photoelectrochemical Study on Anodic Tantalum Oxide Films, Corros. Sci., 1993, 35, p 801–808

    Article  Google Scholar 

  44. J. D. Sloppy, PhD thesis, Pennsylvania State University, USA, 2009

  45. D.D. Macdonald, On the Existence of Our Metals-Based Civilization: I. Phase-Space Analysis, J. Electrochem. Soc., 2006, 153, p B213–B224

    Article  Google Scholar 

  46. R. Cabrera-Sierra, M.A. Pech-Canul, and I. González, The Role of Hydroxide in the Electrochemical Impedance Response of Passive Films in Corrosion Environments, J. Electrochem. Soc., 2006, 153, p B101–B107

    Article  Google Scholar 

  47. P. Acevedo-Peña, J. Vázquez-Arenas, R. Cabrera-Sierra, L. Lartundo-Rojas, and I. González, Hydration and Structural Transformations During Titanium Anodization Under Alkaline Conditions, ECS Trans., 2013, 50, p 21–32

    Article  Google Scholar 

  48. P. Acevedo-Peña, J. Vázquez-Arenas, R. Cabrera-Sierra, L. Lartundo-Rojas, and I. González, Ti Anodization in Alkaline Electrolyte: The Relationship Between Transport of Defects, Film Hydration and Composition, J. Electrochem. Soc., 2013, 160, p C277–C284

    Article  Google Scholar 

  49. L. Hamadou, L. Aïnouche, A. Kadri, S. Ait Ali Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108

    Article  Google Scholar 

  50. M. Khanuja, H. Sharma, B.R. Mehta, and S.M. Shivaprasad, XPS Depth-Profile of the Suboxide Distribution at the Native Oxide/Ta Interface, J. Electron Spectrosc. Relat. Phenom., 2009, 169, p 41–45

    Article  Google Scholar 

  51. R.M. Fleming, D.V. Lang, C.D.W. Jones, M.L. Steigerwald, D.W. Murphy, G.B. Alers, Y.-H. Wong, R.B. van Dover, J.R. Kwo, and A.M. Sergent, Defect Dominated Charge Transport in Amorphous Ta2O5 Thin Films, J. Appl. Phys., 2000, 88, p 850–862

    Article  Google Scholar 

  52. W. Wang and A. Alfantazi, Effect of Microstructure and Temperature on Electrochemical Behavior of Niobium in Phosphate-Buffered Saline Solutions, J. Electrochem. Soc., 2013, 160, p C1–C11

    Article  Google Scholar 

  53. D.J. Blackwood, Influence of the Space-Charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium, Electrochim. Acta, 2000, 46, p 563–569

    Article  Google Scholar 

  54. P.W. Carter, J. Zhang, J. Wang, and S. Li, Characterization and Use of Quinones as Selective Oxidizers of Tantalum in CMP Applications, J. Electrochem. Soc., 2008, 155, p H378–H382

    Article  Google Scholar 

  55. S.V. Babu, A. Jindal, and Y. Li, Chemical-Mechanical Planarization of Cu and Ta, JOM, 2001, 53, p 50–52

    Article  Google Scholar 

  56. S.C. Kuiry, S. Seal, W. Fei, J. Ramsdell, V.H. Desai, Y. Li, and B. Wood, Effect of pH and H2O2 on Ta Chemical Mechanical Planarization: Electrochemistry and X-ray Photoelectron Spectroscopy Studies, J. Electrochem. Soc., 2003, 150, p C36–C43

    Article  Google Scholar 

  57. S. Ramarajan, Y. Li, M. Hariharaputhiran, Y. Her, and S.V. Babu, Effect of pH and Ionic Strength on Chemical Mechanical Polishing of Tantalum, Electrochem. Solid State Lett., 2000, 3, p 232–234

    Article  Google Scholar 

  58. K.A. Assiongbon, S.B. Emery, C.M. Pettit, S.V. Babu, and D. Roy, Chemical Roles of Peroxide-Based Alkaline Slurries in Chemical–Mechanical Polishing of Ta: Investigation of Surface Reactions Using Time-Resolved Impedance Spectroscopy, Mater. Chem. Phys., 2004, 86, p 347–357

    Article  Google Scholar 

  59. A. Jindal and S.V. Babu, Effect of pH on CMP of Copper and Tantalum, J. Electrochem. Soc., 2004, 151, p G709–G716

    Article  Google Scholar 

  60. C.M. Pettit and D. Roy, Role of Iodate Ions in Chemical Mechanical and Electrochemical Mechanical Planarization of Ta Investigated Using Time-Resolved Impedance Spectroscopy, Mater. Lett., 2005, 59, p 3885–3889

    Article  Google Scholar 

  61. S.V.S.B. Janjam, S. Peddeti, D. Roy, and S.V. Babu, Tartaric Acid as a Complexing Agent for Selective Removal of Tantalum and Copper in CMP, Electrochem. Solid State Lett., 2008, 11, p H327–H330

    Article  Google Scholar 

  62. T. Du, D. Tamboli, V. Desai, V.S. Chathapuram, and K.B. Sundaram, Chemical Mechanical Polishing of Tantalum: Oxidizer and pH Effects, J. Mater. Sci.: Mater. Electron., 2004, 15, p 87–90

    Google Scholar 

  63. J. Zhang, S. Li, and P.W. Carter, Chemical Mechanical Polishing of Tantalum: Aqueous Interfacial Reactivity of Tantalum and Tantalum Oxide, J. Electrochem. Soc., 2007, 154, p H109–H114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Attarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attarzadeh, F.R., Attarzadeh, N., Vafaeian, S. et al. Effect of pH on the Electrochemical Behavior of Tantalum in Borate Buffer Solutions. J. of Materi Eng and Perform 25, 4199–4209 (2016). https://doi.org/10.1007/s11665-016-2295-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2295-x

Keywords

Navigation