Skip to main content

Advertisement

Log in

Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new simple powder metallurgy process by sintering TiH2 powders was used to manufacture porous Ti components. The effects of the processing parameters (pressure of cold isostatic pressing and sintering temperature) and the TiH2/Ti ratio in the powder mixtures on the impurities, the linear shrinkage and the pore properties (including overall and open porosities) were comprehensively determined. The addition of TiH2 as a reactant has been found beneficial for the synthesis of porous Ti components. The formation mechanisms of pores were demonstrated based on the dehydrogenation process of TiH2 during sintering, resulting in highest reactivity due to the “in statu nascendi” generation of the metal. In addition, the hardness and corrosion resistance of all the sintered samples were evaluated, related to the overall and open porosities. As a result, an optimal composition of Ti-40 wt.% TiH2 was defined, as its maximum open porosity was about 23%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from Peng et al. (Ref 27). Copyright (2016), with permission from Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Q. Xu, Synthesis, Microstructure and Mechanical Properties of Titanium with Controlled Levels of Porosity, University of Waikato, Hamilton, 2014

    Google Scholar 

  2. V.V. Savich, Porous Materials from Titanium Powders: Past, Present, and Future, Powder Metall. Met. Ceram., 2014, 52(11), p 632–643

    Article  Google Scholar 

  3. Eaton Corporation, Titanium Porous Metal Technology Filter Cartridges 2017 [cited 2017 26 February]. http://www.eaton.eu/PL/Eaton/ProductsServices/Filtration/BagandCartridgeFiltration/Industrial-Process/Industrial-Depth-Filter-Cartridges/LOFMET/index.htm

  4. O.M. Ivasishin, V. Anokhin, A. Demidik, and D.G. Savvakin, Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application, Key Eng. Mater., 2000, 188, p 55–62

    Article  Google Scholar 

  5. O. Ivasishin, V. Moxson, M. Qian, and H. Froes, Low-Cost Titanium Hydride Powder Metallurgy, Titanium Powder Metallurgy: Science, Technology and Applications, Q. Ma and F.H. Froes, Ed., Butterworth-Heinemann, London, 2015, p 117–148

    Chapter  Google Scholar 

  6. V.V. Joshi, C. Lavender, V. Moxon, V. Duz, E. Nyberg, and K.S. Weil, Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock, J. Mater. Eng. Perform., 2012, 22(4), p 995–1003

    Article  Google Scholar 

  7. J. Oh, K. Heo, W. Kim, G. Choi, and J. Lim, Sintering Properties of Ti-6Al-4V Alloys Prepared Using Ti/TiH2 Powders, Mater. Trans., 2013, 54(1), p 119–121

    Article  Google Scholar 

  8. V. Macin and H.J. Christ, Influence of Hydride-Induced Microstructure Modification on Mechanical Properties of Metastable Beta Titanium Alloy Ti 10V-2Fe-3Al, Int. J. Hydrog. Energy, 2015, 40(47), p 16878–16891

    Article  Google Scholar 

  9. B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloys Compd., 2016, 656, p 978–986

    Article  Google Scholar 

  10. A.R. Kennedy and V.H. Lopez, The Decomposition Behavior of as-Received and Oxidized TiH2 Foaming-Agent Powder, Mater. Sci. Eng. A, 2003, 357(1–2), p 258–263

    Article  Google Scholar 

  11. H.R.Z. Sandim, B.V. Morante, and P.A. Suzuki, Kinetics of Thermal Decomposition of Titanium Hydride Powder Using In Situ High-Temperature X-ray Diffraction (HTXRD), Mater. Res., 2005, 8(3), p 293–297

    Article  Google Scholar 

  12. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, Modification of Titanium Hydride for Improved Aluminium Foam Manufacture, Acta Mater., 2006, 54(7), p 1887–1900

    Article  Google Scholar 

  13. B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Slip Casting of Titanium and Titanium Hydride Stabilized Emulsions for the Production of Porous Bulk Titanium, in Proceedings of the EuroPM 2009 Powder Metallurgy Congress & Exhibition (2009)

  14. Y. Zhao, M. Taya, Processing of Porous NiTi by Spark Plasma Sintering Method, in Smart Structures and Materials (International Society for Optics and Photonics, 2006)

  15. Y.W. Gu, M.S. Yong, B.Y. Tay, and C.S. Lim, Synthesis and Bioactivity of Porous Ti Alloy Prepared by Foaming with TiH2, Mater. Sci. Eng. C, 2009, 29(5), p 1515–1520

    Article  Google Scholar 

  16. S. Wu, X. Liu, K.W. Yeung, T. Hu, Z. Xu, J.C. Chung, and P.K. Chu, Hydrogen Release from Titanium Hydride in Foaming of Orthopedic NiTi Scaffolds, Acta Biomater., 2011, 7(3), p 1387–1397

    Article  Google Scholar 

  17. V. Duz, O. Ivasishin, C. Lavender, V. Moxson, V. Telin, Innovative Powder Metallurgy Process for Producing Low Cost Titanium and Titanium and Titanium Alloy Components, in 24th Annual ITA Conference & Exhibition (Las Vegas, Nevada, USA, 2008)

  18. C.R.F. Azevedo, D. Rodrigues, and F.B. Neto, Ti-Al-V Powder Metallurgy (PM) Via the Hydrogenation–Dehydrogenation (HDH) Process, J. Alloys Compd., 2003, 353(1–2), p 217–227

    Article  Google Scholar 

  19. Z.S. Rak and J. Walter, Porous Titanium Foil by Tape Casting Technique, J. Mater. Process. Technol., 2006, 175(1–3), p 358–363

    Article  Google Scholar 

  20. H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, and Q. Zhao, Titanium and Titanium Alloy Via Sintering of TiH2, Key Eng. Mater., 2010, 436, p 157–163

    Article  Google Scholar 

  21. K.S. Weil, E.A. Nyberg, and K.L. Simmons, Use of a Naphthalene-Based Binder in Injection Molding Net-Shape Titanium Components of Controlled Porosity, Mater. Trans., 2005, 46(7), p 1525–1531

    Article  Google Scholar 

  22. D.-W. Lee, H.-S. Lee, J.-H. Park, S.-M. Shin, and J.-P. Wang, Sintering of Titanium Hydride Powder Compaction, Procedia Manuf., 2015, 2, p 550–557

    Article  Google Scholar 

  23. Q. Ye, Z.-M. Guo, J.-L. Bai, B.-X. Lu, J.-P. Lin, J.-J. Hao, J. Luo, and H.-P. Shao, Gelcasting of Titanium Hydride to Fabricate Low-Cost Titanium, Rare Met., 2015, 34(5), p 351–356

    Article  Google Scholar 

  24. C. Wang, L. Pan, Y. Zhang, S. Xiao, and Y. Chen, Deoxidization Mechanism of Hydrogen in TiH2 Dehydrogenation Process, Int. J. Hydrog. Energy, 2016, 41(33), p 14836–14841

    Article  Google Scholar 

  25. S.-W. Yook, B.-H. Yoon, H.-E. Kim, Y.-H. Koh, and Y.-S. Kim, Porous Titanium (Ti) Scaffolds by Freezing TiH2/Camphene Slurries, Mater. Lett., 2008, 62(30), p 4506–4508

    Article  Google Scholar 

  26. A. Ibrahim, F. Zhang, E. Otterstein, and E. Burkel, Processing of Porous Ti and Ti5Mn Foams by Spark Plasma Sintering, Mater. Des., 2011, 32(1), p 146–153

    Article  Google Scholar 

  27. Q. Peng, B. Yang, L. Liu, C. Song, and B. Friedrich, Porous TiAl Alloys Fabricated by Sintering of TiH2 and Al Powder Mixtures, J. Alloys Compd., 2016, 656, p 530–538

    Article  Google Scholar 

  28. Q. Ma, Cold Compaction and Sintering of Titanium and Its Alloys for Near-Net-Shape or Preform Fabrication, Int. J. Powder Metall., 2010, 46(5), p 29–44

    Google Scholar 

  29. ISO 2738:1999, Sintered Metal Materials, Excluding Hardmetals—Permeable Sintered Metal Materials—Determination of Density, Oil Content and Open Porosity (International Organization for Standardization, Geneva)

  30. H. Liu, P. He, J.C. Feng, and J. Cao, Kinetic Study on Nonisothermal Dehydrogenation of TiH2 Powders, Int. J. Hydrog. Energy, 2009, 34(7), p 3018–3025

    Article  Google Scholar 

  31. E. Illeková, J. Harnúšková, R. Florek, F. Simančík, I. Maťko, and P. Švec, Peculiarities of TiH2 Decomposition, J. Therm. Anal. Calorim., 2010, 105(2), p 583–590

    Article  Google Scholar 

  32. M. Ma, L. Liang, L. Wang, Y. Wang, Y. Cheng, B. Tang, W. Xiang, and X. Tan, Phase Transformations of Titanium Hydride in Thermal Desorption Process with Different Heating Rates, Int. J. Hydrog. Energy, 2015, 40(29), p 8926–8934

    Article  Google Scholar 

  33. V. Bhosle, E. Baburaj, M. Miranova, and K. Salama, Dehydrogenation of TiH2, Mater. Sci. Eng. A, 2003, 356(1), p 190–199

    Article  Google Scholar 

  34. K. Kawasaki, T. Sugita, and S. Ebisawa, Adsorption, Surface Reaction, and Mutual Displacement of CO, CO2 and O2 on Titanium Film, Surf. Sci., 1967, 7, p 502–506

    Article  Google Scholar 

  35. K. Kawasaki, N. Hayashi, S. Ebisawa, and T. Sugita, Adsorption of CO, O2 and CO2 on Titanium Film by Electrical Conductivity Measurements, Jpn. J. Appl. Phys., 1971, 10(10), p 1359

    Article  Google Scholar 

  36. S.W. Kim, H.-D. Jung, M.-H. Kang, H.-E. Kim, Y.-H. Koh, and Y. Estrin, Fabrication of Porous Titanium Scaffold with Controlled Porous Structure and Net-Shape Using Magnesium as Spacer, Mater. Sci. Eng. C, 2013, 33(5), p 2808–2815

    Article  Google Scholar 

  37. J.-H. Lee, H.-E. Kim, K.-H. Shin, and Y.-H. Koh, Improving the Strength and Biocompatibility of Porous Titanium Scaffolds by Creating Elongated Pores Coated with a Bioactive, Nanoporous TiO2 Layer, Mater. Lett., 2010, 64(22), p 2526–2529

    Article  Google Scholar 

  38. A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods, Surf. Coat. Technol., 2005, 200(7), p 2192–2207

    Article  Google Scholar 

  39. Alloy Phase Diagrams. Handbook, Aerospace Structural Metals, vol. 3 (ASM Int. Mater. Park, Ohio, 1992)

  40. C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart, Partial Decomposition of TiH2 Studied In Situ by Energy-Dispersive Diffraction and Ex Situ by Diffraction Microtomography of Hard X-ray Synchrotron Radiation, Scr. Mater., 2012, 66(10), p 757–760

    Article  Google Scholar 

  41. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Decomposition of TiH2 Studied In Situ by Synchrotron X-ray and Neutron Diffraction, Acta Mater., 2011, 59(16), p 6318–6330

    Article  Google Scholar 

  42. K. Asaoka, N. Kuwayama, O. Okuno, and I. Miura, Mechanical Properties and Biomechanical Compatibility of Porous Titanium for Dental Implants, J. Biomed. Mater. Res., 1985, 19(6), p 699–713

    Article  Google Scholar 

  43. N. Tuncer, G. Arslan, E. Maire, and L. Salvo, Investigation of Spacer Size Effect on Architecture and Mechanical Properties of Porous Titanium, Mater. Sci. Eng. A, 2011, 530, p 633–642

    Article  Google Scholar 

  44. H.H. Hausner and O.V. Roman, Linear Shrinkage of Metal Powder Compacts During Sintering, Sov. Powder Metall. Met. Ceram., 1965, 3(3), p 180–184

    Article  Google Scholar 

  45. S.D. Luo, M. Yan, G.B. Schaffer, and M. Qian, Sintering of Titanium in Vacuum by Microwave Radiation, Metall. Mater. Trans. A, 2011, 42(8), p 2466–2474

    Article  Google Scholar 

  46. T. Watanabe, The Sintering Phenomenon of Titanium Powders-A Discussion, Int. J. Powder Metall. Powder Technol., 1976, 12, p 209–214

    Google Scholar 

  47. A. Stuijts, Synthesis of Materials from Powders by Sintering, Annu. Rev. Mater. Sci., 1973, 3(1), p 363–395

    Article  Google Scholar 

  48. H.E. Exner and G. Petzow, A Critical Assessment of Porosity Coarsening During Solid State Sintering, Adv. Sci. Technol., 2006, 45, p 539–548

    Article  Google Scholar 

  49. H.E. Exner and C. Müller, Particle Rearrangement and Pore Space Coarsening During Solid-State Sintering, J. Am. Ceram. Soc., 2009, 92(7), p 1384–1390

    Article  Google Scholar 

  50. R.L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, J. Appl. Phys., 1961, 32(5), p 787–792

    Article  Google Scholar 

  51. Magdalena. Dlapka, Herbert. Danninger, Chistian. Gierl, and Björn. Lindqvist, Defining the Pores in PM Components, Met. Powder Rep., 2010, 65(2), p 30–33

    Article  Google Scholar 

  52. J. Breme, E. Eisenbarth, and V. Biehl, Titanium and its alloys for medical applications, Titanium and Titanium Alloys, C. Leyens and M. Peters, Ed., Wiley, New York, 2005, p 423–451

    Chapter  Google Scholar 

  53. Y.-B.P. Kwan and J.R. Alcock, The Impact of Water Impregnation Method on the Accuracy of Open Porosity Measurements, J. Mater. Sci., 2002, 37, p 2557–2561

    Article  Google Scholar 

  54. R. Machaka and H.K. Chikwanda, Analysis of the Cold Compaction Behavior of Titanium Powders: A Comprehensive Inter-Model Comparison Study of Compaction Equations, Metall. Mater. Trans. A, 2015, 46(9), p 4286–4297

    Article  Google Scholar 

  55. J.M. Montes, J.A. Rodríguez, F.G. Cuevas, and J. Cintas, Consolidation by Electrical Resistance Sintering of Ti Powder, J. Mater. Sci., 2011, 46(15), p 5197–5207

    Article  Google Scholar 

  56. J. Capek and D. Vojtech, Microstructural and Mechanical Characteristics of Porous Iron Prepared by Powder Metallurgy, Mater. Sci. Eng. C, 2014, 43, p 494–501

    Article  Google Scholar 

  57. E. Baril, L. Lefebvre, and Y. Thomas, Interstitial Elements in Titanium Powder Metallurgy: Sources and Control, Powder Metall., 2011, 54(3), p 183–186

    Article  Google Scholar 

  58. R.G. Neves, B. Ferrari, A.J. Sanchez-Herencia, and E. Gordo, Colloidal Approach for the Design of Ti Powders Sinterable at Low Temperature, Mater. Lett., 2013, 107, p 75–78

    Article  Google Scholar 

  59. S. Ozbilen, D. Liebert, T. Beck, and M. Bram, Fatigue Behavior of Highly Porous Titanium Produced by Powder Metallurgy with Temporary Space Holders, Mater. Sci. Eng. C, 2016, 60, p 446–457

    Article  Google Scholar 

  60. F.B. Mainier, L.P.C. Monteiro, S.S.M. Tavares, F.R. Leta, and J.M. Pardal, Evaluation of Titanium in Hydrochloric Acid Solutions Containing Corrosion Inhibitors, IOSR J. Mech. Civ. Eng., 2013, 10(1), p 66–69

    Article  Google Scholar 

Download references

Acknowledgments

Q.P. gratefully acknowledges the support from the China Scholarship Council (File No. 2011689004). The Authors acknowledge the help of T. Schreiner, RWTH Aachen University, with operating the CIP machine and the help of C. Song, Shanghai University, with XRD measurements. The authors thank A.M. Khamoushkoo, RWTH Aachen University, for designing the gas tight container for the sintering process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Yang, B. & Friedrich, B. Porous Titanium Parts Fabricated by Sintering of TiH2 and Ti Powder Mixtures. J. of Materi Eng and Perform 27, 228–242 (2018). https://doi.org/10.1007/s11665-017-3099-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3099-3

Keywords

Navigation