Skip to main content
Log in

Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The objective of the present work is to characterize the wear behavior of a cryogenically treated low-carbon AISI 420 martensitic stainless steel, by means of ball-on-disk tribological tests. Wear tests were performed under a range of applied normal loads and in two different environments, namely a petrolatum bath and an argon atmosphere. Wear tracks were analyzed by both optical and scanning electron microscopy and Raman spectroscopy to evaluate wear volume, track geometry, surface features and the tribolayers generated after testing. This paper is an extension of the work originally reported in the VIII Iberian Conference of Tribology (Prieto and Tuckart, in: Ballest Jiménez, Rodríguez Espinosa, Serrano Saurín, Pardilla Arias, Olivares Bermúdez (eds) VIII Iberian conference of tribology, Cartagena, 2015). In this study, it has been experimentally demonstrated that cryogenically treated specimens showed a wear resistance improvement ranging from 35 to 90% compared to conventionally treated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.K. Lo and C.H. Shek, Recent Developments in Stainless Steels, Mater. Sci. Eng., 2009, 65, p 39–104

    Article  Google Scholar 

  2. R.F. Barron, Cryogenic Treatment of Metals to Improve Wear Resistance, Cryogenics (Guildf), 1982, 22, p 409–413

    Article  Google Scholar 

  3. D. Das and K.K. Ray, Structure-Property Correlation of Sub-Zero Treated AISI, D2 Steel, Mater. Sci. Eng. A, 2012, 541, p 45–60

    Article  Google Scholar 

  4. A. Bensely, A. Prabhakaran, D. Mohan Lal, and G. Nagarajan, Enhancing the Wear Resistance of Case Carburized Steel (En 353) by Cryogenic Treatment, Cryogenics (Guildf), 2005, 45(12), p 747–754

    Article  Google Scholar 

  5. V. Leskovšek, B. Ule, and B. Liščić, Relations Between Fracture Toughness, Hardness and Microstructure of Vacuum Heat-Treated High-Speed Steel, J. Mater. Process. Technol., 2002, 127(3), p 298–308

    Article  Google Scholar 

  6. F. Meng, T. Kohsuke, R. Azuma, and H. Sohma, Role of Eta-Carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment, ISIJ Int., 1994, 34(2), p 205–210

    Article  Google Scholar 

  7. F. Meng, K. Tagashira, and H. Sohma, Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel, Scr. Metall. Mater., 1994, 31(7), p 865–868

    Article  Google Scholar 

  8. J. Huang, Y. Zhu, X. Liao, I. Beyerlein, M. Bourke, and T. Mitchell, Microstructure of Cryogenic Treated M2 Tool Steel, Mater. Sci. Eng. A, 2003, 339(1–2), p 241–244

    Article  Google Scholar 

  9. A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov, and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng. A, 2010, 527(26), p 7027–7039

    Article  Google Scholar 

  10. V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, and A. Kortmann, Carbide Precipitation During Tempering of a Tool Steel Subjected to Deep Cryogenic Treatment, Metall. Mater. Trans. A, 2014, 45(5), p 2453–2465

    Article  Google Scholar 

  11. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118(1–3), p 350–355

    Article  Google Scholar 

  12. D. Das, A.K. Dutta, and K.K. Ray, Sub-Zero Treatments of AISI, D2 Steel: Part II. Wear Behavior, Mater. Sci. Eng. A, 2010, 527(9), p 2194–2206

    Article  Google Scholar 

  13. M. Koneshlou, K. Meshinchi Asl, and F. Khomamizadeh, Effect of Cryogenic Treatment on Microstructure, Mechanical and Wear Behaviors of AISI, H13 Hot Work Tool Steel, Cryogenics (Guildf), 2011, 51(1), p 55–61

    Article  Google Scholar 

  14. K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou, and Z. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti–6Al–4V Alloy, Mater. Sci. Eng. A, 2013, 584, p 170–176

    Article  Google Scholar 

  15. Y. Liu, S. Shao, C. Xu, X. Yang, and D. Lu, Enhancing Wear Resistance of Mg-Zn-Gd Alloy by Cryogenic Treatment, Mater. Lett., 2012, 76, p 201–204

    Article  Google Scholar 

  16. J.D. Darwin, D. Mohan Lal, and G. Nagarajan, Optimization of Cryogenic Treatment to Maximize the Wear Resistance of 18% Cr Martensitic Stainless Steel by Taguchi Method, J. Mater. Process. Technol., 2008, 195(1–3), p 241–247

    Article  Google Scholar 

  17. W. Wei, V. Srinivasan, S. Siva, A. Bensely, M. Lal, and A. Alfantazi, Corrosion Behavior of Deep Cryogenically Treated AISI, 420 and AISI, 52100 Steel, Corros. Sci., 2014, 9312, p 708–720

    Google Scholar 

  18. G. Prieto, J.E. Perez Ipiña, and W.R. Tuckart, Cryogenic Treatments on AISI, 420 Stainless Steel: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2014, 605, p 236–243

    Article  Google Scholar 

  19. G. Prieto, W.R. Tuckart, Wear Behavior of Cryogenically Treated AISI 420 Martensitic Stainless Steel, in: A.E. Ballest Jiménez, T. Rodríguez Espinosa, N. Serrano Saurín, J. Pardilla Arias, M.D. Olivares Bermúdez (Eds.), VIII Iberian Conference of Tribology (Universidad Politécnica de Cartagena, Cartagena, España, 2015), pp. 68–75.

  20. G. Prieto, W.R. Tuckart, and J.E. Perez Ipiña, Influence of a Cryogenic Treatment on the Fracture Toughness of AISI, 420 Martensitic Stainless Steel, Mater. Tehnol., 2017, 51, p 591

    Article  Google Scholar 

  21. ASTM A276/A276M-16a, Standard Specification for Stainless Steel Bars and Shapes, ASTM International, West Conshohocken, PA, 2016.

  22. ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus ASTM International, West Conshohocken, PA, 2017.

  23. I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann Ltd, Oxford, 1992

    Google Scholar 

  24. J.A. Di Rienzo, F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, and C.W. Robledo, Infostat [Computer software], Universidad Nacional de Córdoba, Córdoba, 2012

    Google Scholar 

  25. F. de Chaumont et al., Icy: An Open Bioimage Informatics Platform for Extended Reproducible Research, Nat. Methods, 2012, 9, p 690–696

    Article  Google Scholar 

  26. E.E. Underwood, Quantitative stereology, Addison-Wesley, Boston, 1970

    Google Scholar 

  27. R.G. Bayer, Mechanical Wear Fundamentals and Testing, Revised and Expanded, CRC Press, New York, 2004

    Book  Google Scholar 

  28. D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28, p 873–878

    Article  Google Scholar 

  29. E. Ramanaidou, M. Wells, I. Lau, and C. Laukamp, Characterization of Iron Ore by Visible and Infrared Reflectance and, Raman Spectroscopies, in: L. Lu (Ed.), Iron ore (Elsevier 2015), pp. 191–228.

  30. G. Prieto, Estudio del efecto de tratamientos térmicos de criogenia sobre el comportamiento tribológico y la tenacidad a la fractura del acero AISI 420, Universidad Nacional del Sur (2016).

  31. V. Leskovšek, M. Kalin, and J. Vižintin, Influence of Deep-Cryogenic Treatment on Wear Resistance of Vacuum Heat-Treated HSS, Vacuum, 2006, 80(6), p 507–518

    Article  Google Scholar 

  32. S. Da Sun, D. Fabijanic, A. Ghaderi, M. Leary, J. Toton, S. Sun, M. Brandt, and M. Easton, Microstructure and Hardness Characterisation of Laser Coatings Produced with a Mixture of AISI, 420 Stainless Steel and Fe-C-Cr-Nb-B-Mo Steel Alloy Powders, Surf. Coat. Technol., 2016, 296, p 76–87

    Article  Google Scholar 

  33. S. Dodds, A.H. Jones, and S. Cater, Tribological Enhancement of AISI, 420 Martensitic Stainless Steel Through Friction-Stir Processing, Wear, 2013, 302(1–2), p 863–877

    Article  Google Scholar 

  34. C.Q. Yuan, Z. Peng, X.C. Zhou, and X.P. Yan, Effects of Temperature on Sliding Wear Process Under Contaminated Lubricant Test Conditions, Wear, 2004, 257, p 812–822

    Article  Google Scholar 

  35. Z. Cai, Y. Zhou, and J. Qu, Effect of Oil Temperature on Tribological Behavior of a Lubricated Steel-Steel Contact, Wear, 2015, 332–333, p 1158–1163

    Article  Google Scholar 

  36. R. Rodnight, Appendix—Manometric Determination of the Solubility of Oxygen in Liquid Paraffin, Olive Oil and Silicone Fluids, Biochem. J., 1954, 57(4), p 661

    Article  Google Scholar 

  37. N.P. Suh, An Overview of the Delamination Theory of Wear, Wear, 1977, 44, p 1–16

    Article  Google Scholar 

  38. N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25(1), p 111–124

    Article  Google Scholar 

  39. N.P. Suh and H.-C. Sin, The Genesis of Friction, Wear, 1981, 69(1), p 91–114

    Article  Google Scholar 

  40. A.S. Pandkar, N. Arakere, and G. Subhash, Microstructure-Sensitive Accumulation of Plastic Strain Due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue, Int. J. Fatigue, 2014, 63, p 191–202

    Article  Google Scholar 

  41. A. Bhattacharyya, G. Subhash, and N. Arakere, Evolution of Subsurface Plastic Zone Due to Rolling Contact Fatigue of M-50 NiL Case Hardened Bearing Steel, Int. J. Fatigue, 2014, 59, p 102–113

    Article  Google Scholar 

  42. P.J. Blau, Friction Science and Technology: From Concepts to Applications, CRC Press, New York, 2008

    Book  Google Scholar 

  43. Y. Xie and J.A. Williams, The Prediction of Friction and Wear when a Soft Surface Slides Against a Harder Rough Surface, Wear, 1996, 196, p 21–34

    Article  Google Scholar 

  44. A.F. Smith, Influence of Environment on the Unlubricated Wear of 316 Stainless Steel at Room Temperature, Tribol. Int., 1986, 19, p 3–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to the Engineering Department of Universidad Nacional del Sur and CONICET for the financial support given for this article and to the National Agency of Promotion of Science and Technology (ANPCyT) for the Grant PICT 2013-0616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, G., Tuckart, W.R. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel. J. of Materi Eng and Perform 26, 5262–5271 (2017). https://doi.org/10.1007/s11665-017-2986-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2986-y

Keywords

Navigation