Skip to main content

Advertisement

Log in

Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Probst, U. Gbureck, and R. Thull, Binary Nitride and Oxynitride PVD Coatings on Titanium for Biomedical Applications, Surf. Coat. Technol., 2001, 2(148), p 226–233

    Article  Google Scholar 

  2. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669

    Article  Google Scholar 

  3. M.O. Alam and A.S.M.A. Haseeb, Response of Ti-6Al-4V and Ti-24Al-11Nb Alloys to Dry Sliding Wear Against Hardened Steel, Tribol. Int., 2002, 35(6), p 357–362

    Article  Google Scholar 

  4. M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768

    Article  Google Scholar 

  5. P.G. Liang, A. Ferguson, and E.S. Hodge, Tissue Reaction in Rabbit Muscle Exposed to Metallic Implants, J. Biomed. Mater. Res., 1967, 1(1), p 135–149

    Article  Google Scholar 

  6. M.A. Khan, R.L. Williams, and D.F. Williams, In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment, Biomaterials, 1996, 17(22), p 2117–2126

    Article  Google Scholar 

  7. M. Chellappa and U. Vijayalakshmi, Electrophoretic Deposition of Silica and its Composite Coatings on Ti-6Al-4V, and Its In Vitro Corrosion Behaviour for Biomedical Applications, Mater. Sci. Eng: C, 2017, 71, p 879–890

    Article  Google Scholar 

  8. C.H. Ng, N. Rao, W.C. Law, G. Xu, T.L. Cheung, F.T. Cheng, X. Wang, and H.C. Man, Enhancing the Cell Proliferation Performance of NiTi Substrate by Laser Diffusion Nitriding, Surf. Coat. Technol, 2017, 309, p 59–66

    Article  Google Scholar 

  9. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep, 2004, 47(3), p 49–121

    Article  Google Scholar 

  10. Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab J. Sci. Eng., (2017). doi:10.1007/s13369-017-2624-x

  11. F.J. Braga, R.F. Marques, E.A. de Filho, and A.C. Guastaldi, Surface Modification of Ti Dental Implants by Nd: YVO 4 Laser Irradiation, Appl. Surf. Sci., 2007, 253(23), p 9203–9208

    Article  Google Scholar 

  12. Y. Gao et al., Improved Biological Performance of Low Modulus Ti-24Nb-4Zr-7.9 Sn Implants Due to Surface Modification by Anodic Oxidation, Appl. Surf. Sci, 2009, 255(9), p 5009–5015

    Article  Google Scholar 

  13. R. Singh and N.B. Dahotre, Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials, J. Mater. Sci. Mater. Med., 2007, 18(5), p 725–751

    Article  Google Scholar 

  14. A. Kurella and N.B. Dahotre, Surface modification for Bioimplants: The Role of Laser Surface Engineering, J. Biomater. Appl., 2005, 20(1), p 5–50

    Article  Google Scholar 

  15. S.T. Picraux and L.E. Pope, Tailored Surface Modification by Ion Implantation and Laser Treatment, Science, 1984, 226, p 615–622

    Article  Google Scholar 

  16. H. Zhou, F. Li, B. He, J. Wang, and B. Sun, Air plasma Sprayed Thermal Barrier Coatings on Titanium Alloy Substrates, Surf. Coat. Technol., 2007, 201(16), p 7360–7367

    Article  Google Scholar 

  17. H. Gruner, Thermal Spray Coatings on Titanium, Titan. Med. Springer, 2001, 2001, p 375–416

    Article  Google Scholar 

  18. M. Ikeyama, S. Nakao, H. Morikawa, Y. Yokogawa, L.S. Wielunski, R.A. Clissold, and T. Bell, Increase of Surface Hardness Induced by O, Ca or P Ion Implantation into Titanium, Surf. Coat. Technol., 2000, 128, p 400–403

    Article  Google Scholar 

  19. M. Tlotleng, E. Akinlabi, M. Shukla, and S. Pityana, Microstructures, Hardness and Bioactivity of Hydroxyapatite Coatings Deposited by Direct Laser Melting Process, Mater. Sci. Eng. C, 2014, 43, p 189–198

    Article  Google Scholar 

  20. M. Kaczmarek, M.U. Jurczyk, A. Miklaszewski, A. Paszel-Jaworska, A. Romaniuk, N. Lipińska, J. Żurawski, P. Urbaniak, and K. Jurczyk, In Vitro Biocompatibility of Titanium After Plasma Surface Alloying with Boron, Mater. Sci. Eng. C, 2016, 69, p 1240–1247

    Article  Google Scholar 

  21. G.C. Xu, Y. Hibino, Y. Nishimura, and M. Yatsuzuka, Hydrogenated Amorphous Carbon Formation with Plasma-Immersion Ion Plating, Surf. Coat. Technol., 2003, 169, p 299–302

    Article  Google Scholar 

  22. H. Watanabe, Y. Sato, C. Nie, A. Ando, S. Ohtani, and N. Iwamoto, The Mechanical Properties and Microstructure of Ti-Si-N Nanocomposite Films by Ion Plating, Surf. Coat. Technol., 2003, 169, p 452–455

    Article  Google Scholar 

  23. T. Matsue, T. Hanabusa, and Y. Ikeuchi, The Structure of TiN Films Deposited by Arc Ion Plating, Vacuum, 2002, 66(3), p 435–439

    Article  Google Scholar 

  24. K.G. Budinski, Tribological Properties of Titanium Alloys, Wear, 1991, 151(2), p 203–217

    Article  Google Scholar 

  25. V. Fouquet, L. Pichon, M. Drouet, and A. Straboni, Plasma Assisted Nitridation of Ti-6Al-4V, Appl. Surf. Sci., 2004, 221(1), p 248–258

    Article  Google Scholar 

  26. B. Januszewicz and L. Klimek, Nitriding of Titanium and Ti6Al4V Alloy in Ammonia Gas Under Low Pressure, Mater. Sci. Technol., 2010, 26(5), p 586–590

    Article  Google Scholar 

  27. B.S. Yilbas, C. Karatas, O. Keles, I.Y. Usta, and M. Ahsan, CO2 Laser Gas Assisted Nitriding of Ti-6Al-4V Alloy, Appl. Surf. Sci., 2006, 252(24), p 8557–8564

    Article  Google Scholar 

  28. M. Geetha, U.K. Mudali, N.D. Pandey, R. Asokamani, and B. Raj, Microstructural and Corrosion Evaluation of Laser Surface Nitrided Ti-13Nb-13Zr Alloy, Surf. Eng., 2004, 20(1), p 68–74

    Article  Google Scholar 

  29. H. Behrndt and A. Lunk, Biocompatibility of TiN Preclinical and Clinical Investigations, Mater. Sci. Eng A, 1991, 139, p 58–60

    Article  Google Scholar 

  30. S. Shimadaa, T.Y. Takadaa, and J. Tsujino, Deposition of TiN Films on Various Substrates from Alkoxide Solution by Plasma-Enhanced CVD, Surf. Coat. Technol., 2005, 199(1), p 72–76

    Article  Google Scholar 

  31. A. Śliwa, J. Mikuła, K. Gołombek, T. Tański, W. Kwaśny, M. Bonek, and Z. Brytan, Prediction of the Properties of PVD/CVD Coatings with the Use of FEM Analysis, Appl. Surf. Sci., 2016, 388, p 281–287

    Article  Google Scholar 

  32. A. Naghibi, K. Raeissi, and M.H. Fathi, Corrosion and Tribocorrosion Behavior of Ti/TiN PVD Coating on 316L Stainless Steel Substrate in Ringer’s Solution, Mater. Chem. Phys., 2014, 148(3), p 614–623

    Article  Google Scholar 

  33. T.M. Muraleedharan and E.I. Meletis, Surface Modification of Pure Titanium and Ti-6Al-4V by Intensified Plasma Ion Nitriding, Thin Solid Films, 1992, 221(1–2), p 104–113

    Article  Google Scholar 

  34. K.L. Dahm, I.A. Anderson, and P.A. Darnley, Hard Coatings for Orthopedic Implants, Surf. Eng., 1995, 11(2), p 138–144

    Article  Google Scholar 

  35. B.S. Yilbas, A.Z. Sahin, Z. Ahmad, and B.J.A. Aleem, A Study of the Corrosion Properties of TiN Coated and Nitrided Ti-6Al-4V, Corros. Sci., 1995, 37(10), p 1627–1636

    Article  Google Scholar 

  36. B.S. Yilbas, A.F. Arif, C. Karatas, S. Akhtar, and B.J. Aleem, Laser Nitriding of Tool Steel: Thermal Stress Analysis, Int. J. Adv. Manuf. Technol., 2010, 49(9), p 1009–1018

    Article  Google Scholar 

  37. P. Jiang, X.L. He, X.X. Li, L.G. Yu, and H.M. Wang, Wear Resistance of a Laser Surface Alloyed Ti-6Al-4V Alloy, Surf. Coat. Technol., 2000, 130(1), p 24–28

    Article  Google Scholar 

  38. I. Garcia and J.J. De Damborenea, Corrosion Properties of TiN Prepared by Laser Gas Alloying of Ti and Ti6Al4V, Corros. Sci., 1998, 40(8), p 1411–1419

    Article  Google Scholar 

  39. T.M. Manhabosco, S.M. Tamborim, C.B. Dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2001, 53(5), p 1786–1793

    Article  Google Scholar 

  40. S. Sathish, M. Geetha, N.D. Pandey, C. Richard, and R. Asokamani, Studies on the Corrosion and Wear Behavior of the Laser Nitrided Biomedical Titanium and Its Alloys, Mater. Sci. Eng. C, 2010, 30(3), p 376–382

    Article  Google Scholar 

  41. H.D. Vora, R.S. Rajamure, S.N. Dahotre, Y.H. Ho, R. Banerjee, and N.B. Dahotre, Integrated Experimental and Theoretical Approach for Corrosion and Wear Evaluation of Laser Surface Nitrided, Ti-6Al-4V Biomaterial in Physiological Solution, J. Mech. Behav. Biomed. Mater., 2014, 37, p 153–164

    Article  Google Scholar 

  42. T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, and I.L. Müller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2011, 53(5), p 1786–1793

    Article  Google Scholar 

  43. M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 78, p 693–700

    Article  Google Scholar 

  44. M.V. Popa, E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, D. Mareci, and J.C.M. Rosca, Corrosion Resistance Improvement of Titanium Base Alloys, Quim. Nova, 2010, 33(9), p 1892–1896

    Article  Google Scholar 

  45. C.H. Ng, C.W. Chan, H.C. Man, D. Waugh, and J. Lawrence, Modifications of Surface Properties Of Beta Ti by Laser Gas Diffusion Nitriding, J. Laser Appl., 2016, 28(2), p 022505

    Article  Google Scholar 

  46. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  Google Scholar 

  47. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915

    Article  Google Scholar 

  48. H.C. Man, M. Bai, and F.T. Cheng, Laser Diffusion Nitriding of Ti-6Al-4V for Improving Hardness and Wear Resistance, Appl. Surf. Sci., 2011, 258(1), p 436–441

    Article  Google Scholar 

  49. B.S. Yilbas, H. Ali, and C. Karatas, Laser Gas Assisted Treatment of Ti-Alloy: Analysis of Surface Characteristics, Opt. Laser Technol., 2016, 78, p 159–166 ([INVITED])

    Article  Google Scholar 

  50. S.L.R. Da Silva, L.O. Kerber, L. Amaral, and C.A. Dos Santos, X-ray Diffraction Measurements of Plasma-Nitrided Ti-6Al-4V, Surf. Coat. Technol., 1999, 116, p 342–346

    Article  Google Scholar 

  51. A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, and J.D. Majumdar, Mechanical and Electrochemical Properties of Laser Surface Nitrided Ti-6Al-4V, Scr. Mater., 2008, 59(2), p 239–242

    Article  Google Scholar 

  52. E. Toeroek, A.J. Perry, L. Chollet, and W.D. Sproul, Young’s Modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 1987, 153(1–3), p 37–43

    Article  Google Scholar 

  53. J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, and E. Camps, Mechanical and Electrochemical Characterization of Vanadium Nitride (VN) Thin Films, Appl. Surf. Sci., 2011, 258(1), p p312–p320

    Article  Google Scholar 

  54. G.S. Kim, S.Y. Lee, J.H. Hahn, and S.Y. Lee, Synthesis of CrNyAlN Superlattice Coatings Using Closed-Field Unbalanced Magnetron Sputtering Process, Surf. Coat. Technol., 2003, 171(1), p 91–95

    Article  Google Scholar 

  55. A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti–Zr–Hf–Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945

    Article  Google Scholar 

  56. J.P. Hirth, The Influence of Grain Boundaries on Mechanical Properties, Metall. Trans., 1972, 3(10), p 3047–3067

    Article  Google Scholar 

  57. L. Thair, U.K. Mudali, N. Bhuvaneswaran, K.G.M. Nair, R. Asokamani, and B. Raj, Nitrogen Ion Implantation and In Vitro Corrosion Behavior of as-cast Ti-6Al-7Nb Alloy, Corros. Sci., 2002, 44(11), p 2439–2457

    Article  Google Scholar 

  58. E. Galvanetto, F.P. Galliano, A. Fossati, and F. Borgioli, Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Hydrochloric Acid Solutions, Corros. Sci., 2002, 44(7), p 1593–1606

    Article  Google Scholar 

  59. S. Rossi, L. Fedrizzi, T. Bacci, and G. Pradelli, Corrosion Behaviour of Glow Discharge Nitrided Titanium Alloys, Corros. Sci., 2003, 45(3), p 511–529

    Article  Google Scholar 

  60. S.S. Latthe, P. Sudhagar, A. Devadoss, A.M. Kumar, S. Liu, C. Terashima, K. Nakata, and A. Fujishima, Mechanically Bendable Superhydrophobic Steel Surface with Its Self-cleaning and Corrosion-Resistant Properties, J. Mater. Chem. A, 2015, 3(27), p 14263–14271

    Article  Google Scholar 

  61. M. Geetha, D. Durgalaksshmi, and R. Asokamani, Biomedical Implants: Corrosion and its Prevention—A Review, Recent Pat. Corros. Sci., 2010, 2, p 40–54

    Article  Google Scholar 

  62. H.J. Rack and J.I. Qazi, Titanium Alloys for Biomedical Applications, Mat. Sci. Eng. C, 2006, 26(8), p 1269–1277

    Article  Google Scholar 

  63. A. Choubey, B. Basu, and R. Balasubramaniam, Electrochemical Behavior of Ti-based Alloys in Simulated Human Body Fluid Environment, Trends Biomater. Artif. Organs, 2005, 18(2), p 64–72

    Google Scholar 

  64. F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, Commercially Pure Titanium (cp-Ti) Versus Titanium Alloy (Ti6Al4V) Materials as Bone Anchored Implants—Is One Truly Better Than the Other?, Mater. Sci. Eng.: C, 2016, 62, p 960–966

    Article  Google Scholar 

  65. J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng C, 2016, 62, p 36–44

    Article  Google Scholar 

  66. L. Chenghao, J. Li’nan, Y. Chuanjun, and H. Naibao, Crevice Corrosion Behavior of CP Ti, Ti-6Al-4V Alloy and Ti-Ni Shape Memory Alloy in Artificial Body Fluids, Rare Metal Mater. Eng., 2015, 44(4), p 781–785

    Article  Google Scholar 

  67. I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, and M. Rakin, Wear and Corrosion Behaviour of Ti-13Nb-13Zr and Ti-6Al-4V Alloys in Simulated Physiological Solution, Corros. Sci., 2011, 53(2), p 796–808

    Article  Google Scholar 

  68. A. Robin, O.A.S. Carvalho, S.G. Schneider, and S. Schneider, Corrosion Behavior of Ti-xNb-13Zr Alloys in Ringer’s Solution, Mater. Corros., 2008, 59(12), p 929–933

    Article  Google Scholar 

  69. A. Biswas, L. Li, T.K. Maity, U.K. Chatterjee, B.L. Mordike, I. Manna, and J.D. Majumdar, Laser Surface Treatment of Ti-6Al-4V for Bio-implant Application, Lasers Eng, 2007, 17(1–2), p 59–73

    Google Scholar 

  70. R.S. Razavi, G.R. Gordani, and H.C. Man, A Review of the Corrosion of Laser Nitrided Ti-6Al-4V, Anti Corros. Methods Mater., 2011, 58(3), p 140–154

    Article  Google Scholar 

  71. R. Vera et al., Corrosion Protection of Carbon Steel and Copper by Polyaniline and Poly (ortho-methoxyaniline) Films in Sodium Chloride Medium. Electrochemical and Morphological Study, J. Appl. Electrochem., 2007, 37(4), p 19–525

    Article  Google Scholar 

  72. M. Mobin and N. Tanveer, Corrosion Performance of Chemically Synthesized Poly(aniline-coo-toluidine) Copolymer Coating on Mild Steel, J. Coat. Technol. Res., 2012, 9(1), p 27–38

    Article  Google Scholar 

  73. Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng., 2006, 438(440), p 315–319

    Article  Google Scholar 

  74. S.L. Assis, S. Wolynec, and I. Costa, Corrosion Characterization of Titanium Alloys by Electrochemical Techniques, Electrochim. Acta, 2006, 51(8), p 1815–1819

    Article  Google Scholar 

  75. D.Q. Martins, W.R. Osorio, M.E.P. Souza, R. Caram, and A. Garcia, Effects of Zr Content on Microstructure and Corrosion Resistance of Ti-30Nb-Zr Casting Alloys for Biomedical Applications, Electrochim. Acta, 2008, 53(6), p 2809–2817

    Article  Google Scholar 

  76. E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, D. Vashaee, and L. Tayebi, Surface Modification of Stainless Steel Orthopedic Implants by sol–gel ZrTiO4 and ZrTiO4-PMMA Coatings, J. Biomed. Nanotechnol., 2013, 9(8), p 1327–1335

    Article  Google Scholar 

  77. E. Salahinejad, M.J. Hadianfard, D.D. Macdonald, S. Sharifi-Asl, M. Mozafari, K.J. Walker, A. Tahmasbi Rad, S.V. Madihally, and L. Tayebi, In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants, PLoS One, 2013, 8(4), p 1–8

    Article  Google Scholar 

  78. D. Pech, P. Steyer, A.-S. Loir, J.C. Sánchez-López, and J.-P. Millet, Analysis of the Corrosion Protective Ability of PACVD Silica-Based Coatings Deposited on Steel, Surf. Coat. Technol., 2006, 201(1), p 347–352

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge financial funding delivered by King Fahd University of Petroleum and Minerals, Project No. #IN151013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Al-Aqeeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, M.A., Kumar, A.M., Yilbas, B.S. et al. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid. J. of Materi Eng and Perform 26, 5553–5562 (2017). https://doi.org/10.1007/s11665-017-2955-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2955-5

Keywords

Navigation