Skip to main content
Log in

Optimization of Cold Rolling and Subsequent Annealing Treatment on Mechanical Properties of TWIP Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research work studied the effect of cold rolling reduction and subsequent annealing temperature on the microstructural evolution and the mechanical properties of Fe-32Mn-4Si-2Al twinning-induced plasticity steel plates. For this, uniaxial tensile tests were carried out for three cold rolling reductions (50, 65 and 80%) and subsequent annealing treatment at 550-750 °C for 1.8 ks. The results were discussed in terms of the yield strength, ultimate tensile strength and total elongation and its dependence on the introduced microstructure. Regression analysis was used to develop the mathematical models of the mechanical properties. Moreover, analysis of variance was employed to verify the precision of the mathematical models. Finally, desirability function was used as an effective optimization approach for multi-objective optimization of the cold rolling reduction and annealing temperature. It is considerable that there is no research attempting to find optimum mechanical properties of the steels using this approach. The results indicated that applying large cold rolling reduction (upper than 75%) and subsequent annealing treatment in the recovery region and also the application of large cold rolling reduction and the subsequent annealing treatment in the lower limit of partial recrystallization region were effective methods to obtain an excellent combination of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15(4), p 141–168

    Article  Google Scholar 

  2. L. Chen, Y. Zhao, and X. Qin, Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review, Acta Metall. Sin. Engl. Lett., 2013, 26(1), p 1–15

    Article  Google Scholar 

  3. M. Eskandari, A. Zarei-Hanzaki, A.R. Kamali, M.A. Mohtadi-Bonab, and J.A. Szpunar, Strain Hardening During Hot Compression Through Planar Dislocation and Twin-Like Structure in a Low-Density High-Mn Steel, J. Mater. Eng. Perform., 2014, 23(10), p 3567–3576

    Article  Google Scholar 

  4. M. Daamen, O. Guvenc, M. Bambach, and G. Hirt, Development of Efficient Production Routes Based on Strip Casting for Advanced High Strength Steels for Crash-Relevant Parts, CIRP Ann. Manuf. Technol., 2014, 63, p 265–268

    Article  Google Scholar 

  5. O. Gra, L. Kru, G. Frommeyer, and L.W. Meyer, High Strength Fe ± Mn ± (Al, Si) TRIP/TWIP Steels Development Properties Application, Int. J. Plast., 2000, 16, p 1391–1409

    Article  Google Scholar 

  6. B.X. Huang, X.D. Wang, L. Wang, and Y.H. Rong, Effect of Nitrogen on Stacking Fault Formation Probability and Mechanical Properties of Twinning-Induced Plasticity Steels, Metall. Mater. Trans. A, 2008, 39(4), p 717–724

    Article  Google Scholar 

  7. S. Curtze and V.-T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58(15), p 5129–5141

    Article  Google Scholar 

  8. X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, and M. Wang, Stacking Fault Energy and Tensile Deformation Behavior of High-Carbon Twinning-Induced Plasticity Steels: Effect of Cu Addition, Mater. Des., 2013, 45, p 518–523

    Article  Google Scholar 

  9. M. Eskandari, A. Zarei-hanzaki, and A. Marandi, An Investigation Into the Mechanical Behavior of a New Transformation-Twinning Induced Plasticity Steel, Mater. Des., 2012, 39, p 279–284

    Article  Google Scholar 

  10. F. Liu, W.J. Dan, and W.G. Zhang, Strain Hardening Model of Twinning Induced Plasticity Steel at Different Temperatures, Mater. Des., 2015, 65, p 737–742

    Article  Google Scholar 

  11. S. Hamdi and F. Asgari, Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, 39(2), p 294–303

    Article  Google Scholar 

  12. R.D. Asgari, S. El-Danaf, E. Kalidindi, and S.R. Doherty, Strain Hardening Regimes and Microstructural Evolution During Large Strain Compression of Low Stacking Fault Energy Fee Alloys that Form Deformation Twins, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1997, 28(9), p 1781–1795

    Article  Google Scholar 

  13. O. Bouaziz, S. Allain, and C. Scott, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scr. Mater., 2008, 58(6), p 484–487

    Article  Google Scholar 

  14. I. Gutierrez-Urrutia and D. Raabe, Grain Size Effect on Strain Hardening in Twinning-Induced Plasticity Steels, Scr. Mater., 2012, 66(12), p 992–996

    Article  Google Scholar 

  15. J. Kim, Y. Estrin, and B.C.D.E. Cooman, Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel, Metall. Mater. Trans. A, 2013, 44(9), p 4168–4182

    Article  Google Scholar 

  16. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel with Fine-Grained Structure, Scr. Mater., 2008, 59(9), p 963–966

    Article  Google Scholar 

  17. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi, Tensile Deformation Behavior of High Manganese Austenitic Steel: The Role of Grain Size, Mater. Des., 2010, 31(7), p 3395–3402

    Article  Google Scholar 

  18. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1–2), p 1–17

    Article  Google Scholar 

  19. R. Saha, R. Ueji, and N. Tsuji, Fully Recrystallized Nanostructure Fabricated Without Severe Plastic Deformation in High-Mn Austenitic Steel, Scr. Mater., 2013, 68(10), p 813–816

    Article  Google Scholar 

  20. I.B. Timokhina, A. Medvedev, and R. Lapovok, Severe plastic deformation of a TWIP steel, Mater. Sci. Eng. A, 2014, 593, p 163–169

    Article  Google Scholar 

  21. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants, Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52(7), p 2005–2012

    Article  Google Scholar 

  22. K.A. Ofei, L. Zhao, and J. Sietsma, Microstructural Development and Deformation Mechanisms during Cold Rolling of a Medium Stacking Fault Energy TWIP Steel, Mater. Sci. Technol., 2013, 29(2), p 161–167

    Article  Google Scholar 

  23. C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, and G. Gottstein, On the Relation of Microstructure and Texture Evolution in an Austenitic Fe-28Mn-0.28C TWIP Steel During Cold Rolling, Metall. Mater. Trans. A, 2012, 44(2), p 911–922

    Article  Google Scholar 

  24. Y.F. Shen, C.H. Qiu, L. Wang, X. Sun, X.M. Zhao, and L. Zuo, Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe-30Mn-3Si-4Al-0.093C TWIP Steel, Mater. Sci. Eng. A, 2013, 56, p 329–337

    Article  Google Scholar 

  25. C. Haase, D. Ingendahl, O. Güvenç, M. Bambach, W. Bleck, D.A. Molodov, and L.A. Barrales-Mora, On the Applicability of Recovery-Annealed Twinning-Induced Plasticity Steels: Potential and Limitations, Mater. Sci. Eng. A, 2016, 649, p 74–84

    Article  Google Scholar 

  26. O. Bouaziz, C.P. Scott, and G. Petitgand, Nanostructured Steel with High Work-Hardening by the Exploitation of the Thermal Stability of Mechanically Induced Twins, Scr. Mater., 2009, 60(8), p 714–716

    Article  Google Scholar 

  27. D.K. Subramanyam and H.S. Avery, Properties and Selection: Irons, Steels, and High Performance Alloys, ASM handbook, ASM International, 1999

    Google Scholar 

  28. R. Derringer and G. Suich, Simultaneous Optimization of Several Response Variables, Qual. Technol, 1980, 12, p 214–219

    Google Scholar 

  29. P.D. Nezhadfar, A. Rezaeian, and M.S. Papkiadeh, Softening Behavior of a Cold Rolled High-Mn Twinning-Induced Plasticity Steel, J. Mater. Eng. Perform., 2015, 24(10), p 3820–3825

    Article  Google Scholar 

  30. D. Zamani, A. Najafizadeh, H. Monajati, and G. Razavi, The Effect of Thermo-Mechanical Treatment and Adding Niobium and Titanium on Microstructure and Mechanical Properties of TWIP Steel, Int. J. Appl. Phys. Math., 2011, 1(3), p 195–198

    Article  Google Scholar 

  31. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi, Improved Tensile Properties of Partially Recrystallized Submicron Grained TWIP Steel, Mater. Lett., 2010, 64(1), p 15–18

    Article  Google Scholar 

  32. M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh, and A. Marandi, The Grain Structure and Phase Transformations of TWIP Steel During Friction Stir Processing, J. Mater. Eng. Perform., 2015, 24(7), p 2826–2835

    Article  Google Scholar 

  33. C. Haase, O. Kremer, W. Hu, T. Ingendahl, R. Lapovok, and D.A. Modolov, Equal-Channel Angular Pressing and Annealing of a Twinning-Induced Plasticity Steel: Microstructure, Texture, and Mechanical Properties, Acta Mater., 2016, 107, p 239–253

    Article  Google Scholar 

  34. D.A. Freedman, Statistical Models: Theory and Practice, Cambridge university press, Cambridge, 2005

    Book  Google Scholar 

  35. G.C. Montgomery and D.C. Runger, Applied Statistics and Probability for Engineers, Wiley, Hoboken, 2006

    Google Scholar 

  36. X. Wang, H.S. Zurob, J.D. Embury, X. Ren, and I. Yakubtsov, Microstructural Features Controlling the Deformation and Recrystallization Behaviour Fe-30%Mn and Fe-30%Mn-0.5%C, Mater. Sci. Eng. A, 2010, 527(16–17), p 3785–3791

    Article  Google Scholar 

  37. A. Belyakov, Y. Kimura, and K. Tsuzaki, Recovery and Recrystallization in Ferritic Stainless Steel After Large Strain Deformation, Mater. Sci. Eng. A, 2005, 403(1–2), p 249–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zamani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, D., Golshan, A., Dini, G. et al. Optimization of Cold Rolling and Subsequent Annealing Treatment on Mechanical Properties of TWIP Steel. J. of Materi Eng and Perform 26, 3666–3675 (2017). https://doi.org/10.1007/s11665-017-2801-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2801-9

Keywords

Navigation