Skip to main content
Log in

Effects of Tuning the Microstructure on the Mechanical Properties and Machinability of Free-Cutting Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of microstructure on the mechanical properties of steels has been extensively investigated over the past 20 years. This work reports on the effects of microstructural features, such as grains, interfaces, precipitates, and the number and morphology of inclusions, on the mechanical properties and machinability of free-cutting steels. The results show that the element S is aggregated toward the element Mn to produce MnS inclusions, and the MnS inclusions obtained are distributed uniformly in the matrix. The MnS inclusions in the steel impeded the deformation of crystalline grains during the compression tests, increasing the fracture strength. In addition, the cracking-induced effect of the inclusions improves the machinability of the free-cutting steel. The minor additions of elements (e.g., Te) change the distribution of inclusions in the steel. The enhancement of mechanical strength and machinability of free-cutting steel is found to be related to the structural defects, where the grain boundaries and spherical and/or spindle-like inclusions are uniformly distributed in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Ramanujachar and S.V. Subramanian, Micromechanisms of Tool Wear in Machining Free Cutting Steels, Wear, 1996, 197, p 45–55

    Article  Google Scholar 

  2. D. Lou, K. Cui, and Y. Jia, Study on the Machinability of Resulfurized Composite Free-Cutting Steels, J. Mater. Eng. Perform., 1997, 6, p 215–218

    Article  Google Scholar 

  3. K.K. Ray, J. Das, A. Dixit, M. Chakraborty, S. Chakravorty, and S.N. Guha, Effect of Cold Deformation on the Machinability of a Free Cutting Steel, Mater. Manuf. Process., 2006, 21, p 333–340

    Article  Google Scholar 

  4. G. Hongming, W. Xiaochun, W. Hongbin, M. Yongan, and Z. Hongkui, Characterization of Free Cutting Phase in Free Cutting Stainless Steel Containing High Copper, J. Iron. Steel Res. Int., 2009, 16, p 54–60

    Article  Google Scholar 

  5. D.C.J. Farrugia, High Temperature Ductile Damage During Rolling of Free Cutting Steels, Ironmak. Steelmak., 2010, 37, p 298–305

    Article  Google Scholar 

  6. Z. Li and D. Wu, Effect of Free-Cutting Additives on Machining Characteristics of Austenitic Stainless Steels, J. Mater. Sci. Technol., 2010, 26, p 839–844

    Article  Google Scholar 

  7. C. Puncreobutr, P.D. Lee, M. Kaye, D. Balint, D. Farrugia, T. Connolley et al., Quantifying Damage Accumulation During the Hot Deformation of Free-Cutting Steels Using Ultra-fast Synchrotron Tomography, IOP Conf. Ser. Mater. Sci. Eng., 2012, 33, p 012038

    Article  Google Scholar 

  8. Y. Li, T. Suzuki, N. Tang, Y. Koizumi, and A. Chiba, Microstructure Evolution of SUS303 Free-Cutting Steel During Hot Compression Process, Mater. Sci. Eng. A, 2013, 583, p 161–168

    Article  Google Scholar 

  9. T. Suzuki, Y. Li, Y. Koizumi, and A. Chiba, Quantitative Evaluation in Hot Workability of SUS303 Free-Cutting Steel, Mater. Sci. Eng. A, 2013, 563, p 117–124

    Article  Google Scholar 

  10. Y. Zhou, A Review on Fiber Laser Striation–free Cutting for Thick Section Stainless Steel, International Symposium on Optoelectronic Technology and Application, Vol. 9294, 2014, Art. no. 92940H

  11. H. Liu, W. Chen, F. Qi, and W. Li, Effect of Rare Earth Yttrium on the Hot Ductility of Eco-friendly Bi-S Based Free Cutting Steel, High Temp. Mater. Process., 2014, 33, p 399–405

    Google Scholar 

  12. H. Liu, Y. Yu, W. Chen, Q. Wang, and G. Wang, Effect of Mn/S ratio on the hot ductility of eco-friendly Bi-S based free cutting seel, High Temp. Mater. Process., 2014, 33, p 553–561

    Google Scholar 

  13. S. Naghdy and A. Akbarzadeh, Characterization of Dynamic Recrystallization Parameters for a Low Carbon Resulfurized Free-Cutting Steel, Mater. Des., 2014, 53, p 910–914

    Article  Google Scholar 

  14. Y.N. Wang, J. Yang, and Y.P. Bao, Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-indentation Measurements, Metall. Mater. Trans. A, 2014, 46, p 281–292

    Article  Google Scholar 

  15. N. Ånmark, A. Karasev, and P. Jönsson, The Effect of Different Non-metallic Inclusions on the Machinability of Steels, Materials, 2015, 8, p 751–783

    Article  Google Scholar 

  16. S.C. Chen, R. Zhu, L.Q. Xue, T.C. Lin, J.S. Li, and Y. Lin, Effects of Elemental Sn on the Properties and Inclusions of the Free-Cutting Steel, Int. J. Miner. Metall. Mater., 2015, 22, p 141–148

    Article  Google Scholar 

  17. P. Franciosi, L.T. Le, G. Monnet, C. Kahloun, and M.H. Chavanne, Investigation of Slip System Activity in Iron at Room Temperature by SEM and AFM In-situ Tensile and Compression Tests of Iron Single Crystals, Int. J. Plast., 2015, 65, p 226–249

    Article  Google Scholar 

  18. N.T. Nguyen, B.H. Liu, V.T. Pham, and C.Y. Huang, Network under Limited Mobile Devices: A New Technique for Mobile Charging Scheduling with Multiple Sinks, IEEE Syst. J., 2016, 99, p 1–11

    Google Scholar 

  19. N.T. Nguyen, B.H. Liu, V.T. Pham, and Y.S. Luo, On Maximizing the Lifetime for Data Aggregation in Wireless Sensor Networks Using Virtual Data Aggregation Trees, Comput. Netw., 2016, 105, p 99–110

    Article  Google Scholar 

  20. N.T. Nguyen, B.H. Liu, and V.T. Pham, A Dynamic-Range-based Algorithm for Reader-Tag Collision Avoidance Deployment in RFID Networks, Int. Conf. Electron., 2016, 2016, p 1–4

    Google Scholar 

  21. M.S. Bingley and J. Nutting, Behaviour of Low and Medium Carbon Free Cutting Steels During Deformation to Large Strains, Mater. Sci. Technol., 1998, 14, p 108–122

    Article  Google Scholar 

  22. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, and K. Takano, Effects of Free-Cutting Additives on the Machinability of Austenitic Stainless Steels, J. Mater. Process. Technol., 2003, 143–144, p 66–71

    Article  Google Scholar 

  23. S. Ahmad, K. Pilakoutas, QuZ Khan, and K. Neocleous, Stress–Strain Model for Low-Strength Concrete in Uniaxial Compression, Arab. J. Sci. Eng., 2014, 40, p 313–328

    Article  Google Scholar 

  24. J. Cui, J.S. Li, J. Wang, and H.C. Kou, Microstructure Evolution of a Ti-Based Bulk Metallic Glass Composite During Deformation, J. Mater. Eng. Perform., 2014, 24, p 748–753

    Article  Google Scholar 

  25. L.H. Xiong, H.B. Lou, X.D. Wang, T.T. Debela, Q.P. Cao, D.X. Zhang, S.Y. Wang, C.Z. Wang, and J.Z. Jiang, Evolution of Local Atomic Structure During Solidification of Al2Au Liquid: An Ab Initio Study, Acta Mater., 2014, 68, p 1–8

    Article  Google Scholar 

  26. L.H. Xiong, H. Yoo, H.B. Lou, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang, S. Jeon, and G.W. Lee, Evolution of Atomic Structure in Al75Cu25 Liquid from Experimental and Ab Initio Molecular Dynamics Simulation Studies, J. Phys. Condens. Matter, 2014, 3, p 035102

    Google Scholar 

  27. H.B. Lou, L.H. Xiong, A.S. Ahmad, A.G. Li, K. Yang, K. Glazyrin, H.P. Lienmann, H. Franz, X.D. Wang, T.T. Debela, Q.P. Cao, D.X. Zhang, and J.Z. Jiang, Atomic Structure of Pd81Si19 Glassy Alloy Under High Pressure, Acta Mater., 2014, 81, p 420–427

    Article  Google Scholar 

  28. L.H. Xiong, K. Chen, F.S. Ke, H.B. Lou, G.Q. Yue, B. Shen, F. Dong, S.Y. Wang, L.Y. Chen, C.Z. Wang, K.M. Ho, X.D. Wang, L.H. Lai, H.L. Xie, T.Q. Xiao, and J.Z. Jiang, Structural and Dynamical Properties of Liquid Ag74Ge26 Alloy Studied by Experiments and Ab Initio Molecular Dynamics Simulation, Acta Mater., 2015, 92, p 109–116

    Article  Google Scholar 

  29. X.D. Wang, B. Ruta, L.H. Xiong, D.W. Zhang, Y. Chushkin, H.W. Sheng, H.B. Lou, Q.P. Cao, and J.Z. Jiang, Free-Volume Dependent Atomic Dynamics in Beta Relaxation Pronounced La-Based Metallic Glasses, Acta Mater., 2015, 99, p 290–296

    Article  Google Scholar 

  30. L.H. Xiong, X.D. Wang, Q.P. Cao, D.X. Zhang, H.L. Xie, T.Q. Xiao, and J.Z. Jiang, Composition- and Temperature-Dependent Liquid Structures in Al-Cu Alloys: An Ab Initio Molecular Dynamics and X-ray Diffraction Study, J. Phys.: Condens. Matter, 2016, 29, p 035101

    Google Scholar 

  31. L.H. Xiong, F.M. Guo, X.D. Wang, Q.P. Cao, D.X. Zhang, Y. Ren, and J.Z. Jiang, Structural Evolution and Dynamical Properties of Al2Ag and Al2Cu Liquids Studied by Experiments and Ab Intio Molecular Dynamics Simulations, J. Non Cryst. Solids, 2017, 459, p 160–168

    Article  Google Scholar 

  32. Y. Ma, G.J. Peng, D.H. Wen et al., Nanoindentation Creep Behavior in a CoCrFeCuNi High-Entropy Alloy Film with Two Different Structure States, Mater. Sci. Eng. A, 2015, 621, p 111–117

    Article  Google Scholar 

  33. Y. Ma, J.H. Ye, G.J. Peng et al., Nanoindentation Study of Size Effect on Shear Transformation Zone Size in a Ni-Nb Metallic Glass, Mater. Sci. Eng. A, 2015, 627, p 153–160

    Article  Google Scholar 

  34. Y. Ma, G.J. Peng, T.T. Debela et al., Nanoindentation Study on the Characteristic of Shear Transformation Zone Volume in Metallic Glassy Films, Scripta Mater., 2015, 108, p 52–55

    Article  Google Scholar 

  35. Y. Ma, J.H. Ye, G.J. Peng et al., Loading Rate Effect on the Creep Behavior of Metallic Glassy Films and Its Correlation with the Shear Transformation Zone, Mater. Sci. Eng. A, 2015, 622, p 76–81

    Article  Google Scholar 

  36. Y. Ma, G.J. Peng, Y.H. Feng et al., NANOINDENTATION INVESTIGATION on the Creep Mechanism in Metallic Glassy Films, Mater. Sci. Eng. A, 2016, 651, p 548–555

    Article  Google Scholar 

  37. H. Hosseini-Toudeshky, B. Anbarlooie, and J. Kadkhodapour, Micromechanics Stress–Strain Behavior Prediction of Dual Phase Steel Considering Plasticity and Grain Boundaries Debonding, Mater. Des., 2015, 68, p 167–176

    Article  Google Scholar 

  38. A. Matin, F.F. Saniee, and H.R. Abedi, Microstructure and Mechanical Properties of Mg/SiC and AZ80/SiC Nano-Composites Fabricated Through Stir Casting Method, Mater. Sci. Eng. A, 2015, 625, p 81–88

    Article  Google Scholar 

  39. Y. Shan, G. Nian, Q. Xu, W. Tao, and S. Qu, Strength Analysis of Syntactic Foams Using a Three-Dimensional Continuum Damage Finite Element Model, J. Appl. Mech., 2015, 82, p 021004

    Article  Google Scholar 

  40. Y. Ma, Y.H. Feng, T.T. Debela et al., Nanoindentation Study on the Creep Characteristics of High-Entropy Alloy Films: Fcc Versus Bcc Structures, Int. J. Refract Metal Hard Mater., 2016, 54, p 395–400

    Article  Google Scholar 

  41. Y. Ma, G.J. Peng, W.F. Jiang et al., Nanoindentation Study on Shear Transformation Zone in a CuZrAl Metallic Glassy Film with Different Thickness, J. Non Cryst. Solids, 2016, 442, p 67–72

    Article  Google Scholar 

  42. L.H. Xiong, X.D. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q.P. Cao, H.L. Xie, T.Q. Xiao, D.X. Zhang, C.Z. Wang, K.M. Ho, Y. Ren, and J.Z. Jiang, Temperature-Dependent Structure Evolution in Liquid Gallium, Acta Mater., 2017, 128, p 304–312

    Article  Google Scholar 

  43. M. Taherishargh, M.A. Sulong, I.V. Belova, G.E. Murch, and T. Fiedler, On the Particle Size Effect in Expanded Perlite Aluminium Syntactic Foam, Mater. Des., 2015, 66, p 294–303

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Science and Technology Program of Zhejiang Province (2014C37062) and Future Research Funds of the Yingdai Company. Dr. Y. Ma is gratefully acknowledged for the experimental design and result discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C.J., Xia, M.Z., Ma, M.Y. et al. Effects of Tuning the Microstructure on the Mechanical Properties and Machinability of Free-Cutting Steels. J. of Materi Eng and Perform 26, 3474–3481 (2017). https://doi.org/10.1007/s11665-017-2788-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2788-2

Keywords

Navigation