Skip to main content
Log in

Friction Stir Processing of Al with Mechanically Alloyed Al-TiO2-Graphite Powder: Microstructure and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Commercial pure aluminum was friction stir processed with Al-TiO2-graphite mixture pre-placed into a groove in Al. Two kinds of powders were used as starting particles for friction stir processing; as-mixed powder and 60-h ball-milled powder. Characterization by XRD, SEM and EDS analysis showed that with as-mixed powder an Al composite reinforced with Al3Ti and Al2O3 was produced. Graphite particles were remained in the matrix unchanged. Using 60-h ball-milled powder as starting particle in friction stir processing, resulted in an Al composite reinforced with TiC-Al2O3 nanoparticles dispersed uniformly into the matrix having the size of 100 nm on average. In this state, the microhardness values obtained in the stir zone were higher than those ones obtained using as-mixed powders. The mechanism of phases formation during friction stir processing with two different kinds of powders are elaborated and discussed in this study. Also the mechanical properties of samples were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Hsu, C. Chang, P. Kao, N. Ho, and C. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54(19), p 5241–5249

    Article  Google Scholar 

  2. F. Khodabakhshi, A. Simchi, A. Kokabi, P. Švec, F. Simančík, and A. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215–229

    Article  Google Scholar 

  3. N.J. Panaskar and A. Sharma, Surface Modification and Nanocomposite Layering of Fastener-Hole Through Friction-Stir Processing, Mater. Manuf. Processes, 2014, 29(6), p 726–732

    Article  Google Scholar 

  4. A. Shafiei-Zarghani, S. Kashani-Bozorg, and A. Zarei-Hanzaki, Microstructures and Mechanical Properties of Al/Al2O3 Surface Nano-composite Layer Produced by Friction Stir Processing, Mater. Sci. Eng. A, 2009, 500(1), p 84–91

    Article  Google Scholar 

  5. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652

    Article  Google Scholar 

  6. D. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., 1994, 39(1), p 1–23

    Article  Google Scholar 

  7. H. Arora, H. Singh, and B. Dhindaw, Composite Fabrication Using Friction Stir Processing—A Review, Int. J. Adv. Manuf. Technol., 2012, 61(9-12), p 1043–1055

    Article  Google Scholar 

  8. S. Pramod, S.R. Bakshi, and B. Murty, Aluminum-Based Cast In Situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24(6), p 2185–2207

    Article  Google Scholar 

  9. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46(1), p 1–184

    Article  Google Scholar 

  10. N. Welham, Mechanical Activation of the Solid-State Reaction Between Al and TiO2, Mater. Sci. Eng. A, 1998, 255(1), p 81–89

    Article  Google Scholar 

  11. V. Sharma, U. Prakash, and B.M. Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134

    Article  Google Scholar 

  12. V. Sharma, Y. Gupta, B.M. Kumar, and U. Prakash, Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite, Mater. Manuf. Process., 2016, 31(10), p 1384–1392

    Article  Google Scholar 

  13. C. Langlade, A. Roman, D. Schlegel, E. Gete, and M. Folea, Formation of a Tribologically Transformed Surface (TTS) on AISI 1045 Steel by Friction Stir Processing, Mater. Manuf. Process., 2016, 31(12), p 1565–1572

    Article  Google Scholar 

  14. R. Beygi, M. Kazeminezhad, A. Kokabi, and A. Loureiro, Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior, Metall. Mater. Trans. A, 2015, 46(6), p 2544–2553

    Article  Google Scholar 

  15. Y.X. Gan, D. Solomon, and M. Reinbolt, Friction Stir Processing of Particle Reinforced Composite Materials, Materials, 2010, 3(1), p 329–350

    Article  Google Scholar 

  16. Q. Zhang, B. Xiao, W. Wang, and Z. Ma, Reactive Mechanism and Mechanical Properties of In Situ Composites Fabricated from an Al-TiO2 System by Friction Stir Processing, Acta Mater., 2012, 60(20), p 7090–7103

    Article  Google Scholar 

  17. H. Arik, Production and Characterization of In Situ Al4C3 Reinforced Aluminum-Based Composite Produced by Mechanical Alloying Technique, Mater. Des., 2004, 25(1), p 31–40

    Article  Google Scholar 

  18. M. Rahimian, N. Ehsani, N. Parvin, and H. reza Baharvandi, The Effect of Particle Size, Sintering Temperature and Sintering Time on the Properties of Al-Al2O3 Composites, Made by Powder Metallurgy, J. Mater. Process. Technol., 2009, 209(14), p 5387–5393

    Article  Google Scholar 

  19. C. Koch, Materials Synthesis by Mechanical Alloying, Annu. Rev. Mater. Sci., 1989, 19(1), p 121–143

    Article  Google Scholar 

  20. P. Gilman and J. Benjamin, Mechanical Alloying, Annu. Rev. Mater. Sci., 1983, 13(1), p 279–300

    Article  Google Scholar 

  21. C. Hsu, P. Kao, and N. Ho, Ultrafine-Grained Al-Al2 Cu Composite Produced In Situ by Friction Stir Processing, Scr. Mater., 2005, 53(3), p 341–345

    Article  Google Scholar 

  22. B.L.X.Q. Zhang, Q.Z. Wang, and Z.Y. Ma, In Situ Al3Ti and Al2O3 Nanoparticles Reinforced Al Composites Produced by Friction Stir Processing in an Al-TiO2 System, Mater. Lett., 2011, 65, p 2070–2072

    Article  Google Scholar 

  23. A. Shahi, M.H. Sohi, D. Ahmadkhaniha, and M. Ghambari, In Situ Formation of Al-Al3Ni Composites on Commercially Pure Aluminium by Friction Stir Processing, Int. J. Adv. Manuf. Technol., 2014, 75(9-12), p 1331–1337

    Article  Google Scholar 

  24. F.A. Mehraban, F. Karimzadeh, and M. Abbasi, Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties, JOM, 2015, 67(5), p 998–1006

    Article  Google Scholar 

  25. G. You, N. Ho, and P. Kao, In-Situ Formation of Al2O3 Nanoparticles During Friction Stir Processing of Al SiO 2 Composite, Mater. Charact., 2013, 80, p 1–8

    Article  Google Scholar 

  26. A. Dolatkhah, P. Golbabaei, M.B. Givi, and F. Molaiekiya, Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated via Friction Stir Processing, Mater. Des., 2012, 37, p 458–464

    Article  Google Scholar 

  27. K. Deepandurai and R. Parameshwaran, Multiresponse Optimization of FSW Parameters for Cast AA7075/SiCp Composite, Mater. Manuf. Processes, 2016, 31(10), p 1333–1341

    Article  Google Scholar 

  28. D. Pantelis, P. Karakizis, N. Daniolos, C. Charitidis, E. Koumoulos, and D. Dragatogiannis, Microstructural Study and Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H111 and AA6082-T6 Reinforced with SiC Nanoparticles, Mater. Manuf. Processes, 2016, 31(3), p 264–274

    Article  Google Scholar 

  29. R. Bauri, D. Yadav, and G. Suhas, Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al-TiC In Situ Composite, Mater. Sci. Eng. A, 2011, 528(13), p 4732–4739

    Article  Google Scholar 

  30. D.A. Dragatogiannis, E.P. Koumoulos, I.A. Kartsonakis, D.I. Pantelis, P.N. Karakizis, and C.A. Charitidis, Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced with Tic Nanoparticles, Mater. Manuf. Process., 2016, 31(16), p 2101–2114

    Article  Google Scholar 

  31. Q. Hu, P. Luo, and Y. Yan, Microstructures, Densification and Mechanical Properties of TiC-Al2O3-Al Composite by Field-Activated Combustion Synthesis, Mater. Sci. Eng. A, 2008, 486(1), p 215–221

    Article  Google Scholar 

  32. M.Z. Mehrizi, R. Beygi, and G. Eisaabadi, Synthesis of Al/TiC-Al2O3 Nanocomposite by Mechanical Alloying and Subsequent Heat Treatment, Ceram. Int., 2016, 42, p 8895–8899

    Article  Google Scholar 

  33. H. Zhu, Y. Jiang, Y. Yao, J. Song, J. Li, and Z. Xie, Reaction Pathways, Activation Energies and Mechanical Properties of Hybrid Composites Synthesized In Situ from Al-TiO2-C Powder Mixtures, Mater. Chem. Phys., 2012, 137(2), p 532–542

    Article  Google Scholar 

  34. A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Mechanochemical Carboaluminothermic Reduction of Rutile to Produce TiC-Al2O3 Nanocomposite, Adv. Powder Technol., 2014, 25(1), p 423–429

    Article  Google Scholar 

  35. M. Zhu, X. Che, Z. Li, J. Lai, and M. Qi, Mechanical Alloying of Immiscible Pb-Al Binary System by High Energy Ball Milling, J. Mater. Sci., 1998, 33(24), p 5873–5881

    Article  Google Scholar 

  36. C. Wen, K. Kobayashi, A. Sugiyama, T. Nishio, and A. Matsumoto, Synthesis of Nanocrystallite by Mechanical Alloying and In Situ Observation of Their Combustion Phase Transformation in Al3Ti, J. Mater. Sci., 2000, 35(8), p 2099–2105

    Article  Google Scholar 

  37. M. Kozma, Friction and wear of aluminum matrix composites, ANNALS, 2003, 24, p 26

    Google Scholar 

  38. H. Ribes, R. Da Silva, M. Suery, and T. Bretheau, Effect of Interfacial Oxide Layer in Al-SiC Particle Composites on Bond Strength and Mechanical Behaviour, Mater. Sci. Technol., 1990, 6(7), p 621–628

    Article  Google Scholar 

  39. Y.-M. Hwang, Z.-W. Kang, Y.-C. Chiou, and H.-H. Hsu, Experimental Study on Temperature Distributions within the Workpiece During Friction Stir Welding of Aluminum Alloys, Int. J. Mach. Tools Manuf, 2008, 48(7), p 778–787

    Article  Google Scholar 

  40. M.M. El-Rayes and E.A. El-Danaf, The Influence of Multi-pass Friction Stir Processing on the Microstructural and Mechanical Properties of Aluminum Alloy 6082, J. Mater. Process. Technol., 2012, 212(5), p 1157–1168

    Article  Google Scholar 

  41. M. Barmouz, P. Asadi, M.B. Givi, and M. Taherishargh, Investigation of Mechanical Properties of Cu/SiC Composite Fabricated by FSP: Effect of SiC Particles’ Size and Volume Fraction, Mater. Sci. Eng. A, 2011, 528(3), p 1740–1749

    Article  Google Scholar 

  42. Q. Zhang, B. Xiao, Q. Wang, and Z. Ma, In Situ Al3 Ti and Al2O3 Nanoparticles Reinforced Al Composites Produced by Friction Stir Processing in an Al-TiO2 System, Mater. Lett., 2011, 65(13), p 2070–2072

    Article  Google Scholar 

  43. C. Hsu, P. Kao, and N. Ho, Intermetallic-Reinforced Aluminum Matrix Composites Produced In Situ by Friction Stir Processing, Mater. Lett., 2007, 61(6), p 1315–1318

    Article  Google Scholar 

  44. E.M. Sharifi, F. Karimzadeh, and M. Enayati, Mechanochemically Synthesized Al2O3-TiC Nanocomposite, J. Alloys Compd., 2010, 491(1), p 411–415

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the research board of Arak University for the financial support and the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Beygi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beygi, R., Mehrizi, M.Z. & Eisaabadi B, G. Friction Stir Processing of Al with Mechanically Alloyed Al-TiO2-Graphite Powder: Microstructure and Mechanical Properties. J. of Materi Eng and Perform 26, 1455–1462 (2017). https://doi.org/10.1007/s11665-017-2552-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2552-7

Keywords

Navigation