Skip to main content
Log in

Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum matrix in situ nanocomposite was produced by one to six passes friction stir processing (FSP) with pre-placed Fe3O4 nanoparticles (15-20 nm). Microstructure studies showed that solid-state reactions between the aluminum matrix and Fe3O4 particles during the process led to in situ formation of Al3Fe and Al5Fe2 in the stir zone. Initial Fe3O4 as well as Al-Fe intermetallic compounds (IMCs) particles were homogeneously dispersed in a fine grain matrix after six passes of FSP. Hardness and ultimate tensile strength of the composites were increased 64 and 27%, respectively, compared to the base metal. The reasons were studied in the light of reinforcing particles distribution, formation of Al-Fe IMCs, and grain size of the aluminum matrix. Pin-on-disk wear test indicated that in comparison with the base metal, the weight loss and friction coefficient of the composite processed by six passes decreased about 70 and 37%, respectively. Impact energy of the composite produced by six passes was considerably higher than that of the composite produced by one pass and reached to ~65% of the impact energy of the annealed aluminum base metal. Moreover, corrosion potential in the composites changed to more noble potentials compared to the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, 1994, p 176–184

    Google Scholar 

  2. G. Hussain, R. Hashemi, H. Hashemi, and K.A. Al-Ghamdi, An Experimental Study on Multi-pass Friction Stir Processing of Al/TiN Composite: Some Microstructural, Mechanical, and Wear Characteristics, Int. J. Adv. Manuf. Technol., 2016, 84, p 533–546

    Article  Google Scholar 

  3. Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of Friction Stir Processing with B4C Particles on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2016, 78, p 1437–1443

    Article  Google Scholar 

  4. O. Culha, C. Tekmen, M. Toparli, and Y. Tsunekawa, Mechanical Properties of In Situ Al2O3 Formed Al-Si Composite Coating Via Atmospheric Plasma Spraying, Mater. Des., 2010, 31, p 533–544

    Article  Google Scholar 

  5. O. Verezub, Z. Kálazi, G. Buza, N.V. Verezub, and G. Kaptay, In-Situ Synthesis of a Carbide Reinforced Steel Matrix Surface Nanocomposite by Laser Melt Injection Technology and Subsequent Heat Treatment, Surf. Coat. Technol., 2009, 203, p 3049–3057

    Article  Google Scholar 

  6. S.M. Ma, P. Zhang, G. Ji, Z. Chen, G.A. Sun, S.Y. Zhong, V. Ji, and H.W. Wang, Microstructure and Mechanical Properties of Friction Stir Processed Al-Mg-Si Alloys Dispersion-Strengthened by Nanosized TiB2 Particles, J. Alloys Compd., 2014, 616, p 128–136

    Article  Google Scholar 

  7. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78

    Article  Google Scholar 

  8. M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh, and A. Marandi, The Grain Structure and Phase Transformations of TWIP Steel During Friction Stir Processing, J. Mater. Eng. Perform., 2015, 24(7), p 2826–2835

    Article  Google Scholar 

  9. J. Jafari, M.K. Besharati Givi, and M. Barmouz, Mechanical and Microstructural Characterization of Cu/CNT Nanocomposite Layers Fabricated Via Friction Stir Processing, Int. J. Adv. Manuf. Technol., 2015, 78, p 199–209

    Article  Google Scholar 

  10. M. Barmouz, M.K. Besharati Givi, and J. Jafari, Evaluation of Tensile Deformation Properties of Friction Stir Processed Pure Copper: Effect of Processing Parameters and Pass Number, J. Mater. Eng. Perform., 2014, 23(1), p 101–107

    Article  Google Scholar 

  11. R. Mishra, Z. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310

    Article  Google Scholar 

  12. B. Hekner, J. Myalski, N. Valle, A. Botor-Probierz, M. Sopicka-Lizer, and J. Wieczorek, Friction and Wear Behavior of Al-SiC(n) Hybrid Composites with Carbon Addition, Compos. Part B Eng., 2017, 108, p 291–300. doi:10.1016/j.compositesb.2016.09.103

    Article  Google Scholar 

  13. R. Palanivel, I. Dinaharan, R.F. Laubscher, and J.P. Davim, Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing, Mater. Des., 2016, 106, p 195–204

    Article  Google Scholar 

  14. D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24(3), p 1116–1124

    Article  Google Scholar 

  15. S.R. Anvari, F. Karimzadeh, and M.H. Enayati, A Novel Route for Development of Al-Cr-O Surface Nano-composite by Friction Stir Processing, J. Alloys Compd., 2013, 562, p 48–55

    Article  Google Scholar 

  16. J.M. Lee, S.B. Kang, T. Sato, H. Tezuka, and A. Kamiob, Evolution of Iron Aluminide in Al/Fe In Situ Composites Fabricated by Plasma Synthesis Method, Mater. Sci. Eng. A, 2003, 362, p 257–263

    Article  Google Scholar 

  17. J. Gu, S. Gu, L. Xue, S. Wu, and Y. Yan, Microstructure and Mechanical Properties of In-situ Al13Fe4/Al Composites Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 558, p 684–691

    Article  Google Scholar 

  18. I.S. Lee, P.W. Kao, and N.J. Ho, Microstructure and Mechanical Properties of Al-Fe In Situ Nanocomposite Produced by Friction Stir Processing, Intermetallics, 2008, 16, p 1104–1108

    Article  Google Scholar 

  19. M. SarkariKhorrami, S. Samadi, Z. Janghorban, and M. Movahedi, In-situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles, Mater. Sci. Eng. A, 2015, 641, p 380–390

    Article  Google Scholar 

  20. http://www.us-nano.com/inc/sdetail/16809. Accessed 26 Jan 2017

  21. D.R. Gaskell, Introduction of thermodynamics of materials, 4th ed., Taylor & Francis e-Library pub, Abingdon, 2009, p 412–430

    Google Scholar 

  22. M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, H. Najafi, S.A. Farzadfar, W.J. Cheng, and C.J. Wang, Growth Kinetics of Al-Fe Intermetallic Compounds During Annealing Treatment of Friction Stir Lap Welds, Mater. Charact., 2014, 90, p 121–126

    Article  Google Scholar 

  23. W. Xingqing, J.V. Wood, S. Yongjiang, and L. Haibo, Formation of Intermetallic Compound in Iron-Aluminum Alloys, J. Shanghai Univ., 2014, 2, p 305–310

    Google Scholar 

  24. N. Hansen and B. Bay, Initial Stages of Recrystallization in Aluminum Containing Both Large and Small Particles, Acta Metall., 1981, 29, p 65–77

    Article  Google Scholar 

  25. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  26. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54, p 5241–5249

    Article  Google Scholar 

  27. M. Sarkari Khorrami, M. Kazeminezhad, and A.H. Kokabi, The Effect of SiC Nanoparticles on the Friction Stir Processing of Severely Deformed Aluminum, Mater. Sci. Eng. A, 2014, 602, p 110–118

    Article  Google Scholar 

  28. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–753

    Article  Google Scholar 

  29. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 147, p 25–28

    Google Scholar 

  30. D. Tabor, The Hardness and Strength of Metals, J. Inst. Metals, 1951, 79, p 1–18

    Google Scholar 

  31. T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma, On the Hall–Petch Relationship in a Nanostructured Al-Cu Alloy, Mater. Sci. Eng. A, 2010, 527, p 7821–7825

    Article  Google Scholar 

  32. M. Khajouei-Nezhad, M.H. Paydar, R. Ebrahimi, P. Jenei, P. Nagy, and J. Gubicza, Microstructure and Mechanical Properties of Ultrafine-Grained Aluminum Consolidated by High-Pressure Torsion, Mater. Sci. Eng. A, 2017, 682, p 501–508

    Article  Google Scholar 

  33. C.R. Bradbury, J.-K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, Hardness of Multi Wall Carbon Nanotubes Reinforced Aluminium Matrix Composites, J. Alloys Compd., 2014, 585, p 362–367

    Article  Google Scholar 

  34. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng. A, 2003, 354, p 298–305

    Article  Google Scholar 

  35. N.P. Suh, The Delamination Theory of Wear, Wear, 1973, 25, p 111–124

    Article  Google Scholar 

  36. R.L. Deuis, C. Subramanian, and J.M. Yellupb, Dry Sliding Wear of Aluminium Composites-A Review, Compos. Sci. Technol., 1997, 57, p 415–435

    Article  Google Scholar 

  37. B. Bhushan, Modern Tribology Handbook, CRC Press LLC, Florida, 2001, p 1–1728

    Google Scholar 

  38. E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing, Wear, 2010, 268, p 1111–1121

    Article  Google Scholar 

  39. B. Venkataraman and G. Sundararajan, Correlation Between the Characteristics of the Mechanically Mixed Layer and Wear Behavior of Aluminum, Al-7075 Alloy and Al-MMCs, Wear, 2000, 245, p 22–38

    Article  Google Scholar 

  40. M.R. Rosenberger, E. Forlerer, and C.E. Schvezov, Wear of Different Aluminum Matrix Composites Under Conditions that Generate a Mechanically Mixed Layer, Wear, 2005, 259, p p590–p601

    Article  Google Scholar 

  41. N. Birbilis and R.G. Buchheit, Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys, J. Electrochem. Soc., 2005, 152(4), p B140–B151

    Article  Google Scholar 

  42. M.K. Cavanaugh, J.-C. Li, N. Birbilis, and R.G. Buchheit, Electrochemical Characterization of Intermetallic Phases Common to Aluminum Alloys as a Function of Solution Temperature, J. Electrochem. Soc., 2014, 161(12), p C535–C543

    Article  Google Scholar 

  43. H.C. Ananda Murthy and S.K. Singh, Influence of TiC Particulate Reinforcement on the Corrosion Behaviour of Al 6061 Metal Matrix Composites, Adv. Mater. Lett., 2015, 6(7), p 633–640

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Movahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, M., Movahedi, M. & Kokabi, A.H. Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing. J. of Materi Eng and Perform 26, 3516–3530 (2017). https://doi.org/10.1007/s11665-017-2752-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2752-1

Keywords

Navigation