Skip to main content
Log in

Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Immersion experiments were carried out to study H2S/CO2 corrosion behavior of low-alloy pipeline steel in terms of microstructure, corrosion kinetics, corrosion phases, microscopic surface morphology, cross-sectional morphology and elemental distribution. The experimental results indicated that the microstructure of designed steel was tempered martensite. The corrosion rate followed exponential behavior. H2S corrosion dominated the corrosion process, and the corrosion products were mackinawite, greigite and troilite. The corrosion products changed from mackinawite/greigite to mackinawite/troilite, and mackinawite dominated the corrosion phases. The corrosion products became more compact with immersion time, which led to decrease in corrosion rate. The chromium and molybdenum content in the corrosion product was higher than that in the steel substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.N. Xu, S.Q. Guo, W. Chang, T.H. Chen, L.H. Hu, and M.X. Lu, Corrosion of Cr Bearing Low Alloy Pipeline Steel in CO2 Environment at Static and Flowing Condition, Appl. Surf. Sci., 2013, 270, p 395–404

    Article  Google Scholar 

  2. Z.D. Cui, S.L. Wu, S.L. Zhou, and X.J. Yang, Study on Corrosion Properties of Pipelines in Simulated Produced Water Saturated with Supercritical CO2, Appl. Surf. Sci., 2006, 252, p 2368–2374

    Article  Google Scholar 

  3. J. Zhang, Z.L. Wang, Z.M. Wang, and X. Han, Chemical Analysis of the Initial Corrosion Layer on Pipeline Steels in Simulated CO2-Enhanced Oil Recovery Bines, Corros. Sci., 2012, 65, p 397–404

    Article  Google Scholar 

  4. M.A. Islam and Z.N. Farhat, Characterization of the Corrosion Layer on Pipeline Steel in Sweet Environment, J. Mater. Eng. Perform., 2015, 24, p 3142–3158

    Article  Google Scholar 

  5. Z.G. Liu, X.H. Gao, C. Yu, L.X. Du, J.P. Li, and P.J. Hao, Corrosion Behavior of Low-Alloy Steel Pipeline Steel with 1% Cr Under CO2 Condition, Acta Metall. Sin. (Engl. Lett.), 2015, 28, p 739–747

    Article  Google Scholar 

  6. Z.G. Liu, X.H. Gao, L.X. Du, J.P. Li, Y. Kuang, and B. Wu, Corrosion Behavior of Low-Alloy Steel with Martensite/Ferrite Microstructure at Vapor-Saturated CO2 and CO2-Saturated Brine Environments, Appl. Surf. Sci., 2015, 351, p 610–623

    Article  Google Scholar 

  7. M.A. Mohtadi-Bonab, R. Karimdadashi, M. Eskandari, and J.A. Szpunar, Hydrogen-Induced Cracking Assessment in Pipeline Steels Through Permeation and Crystallographic Texture Measurements, J. Mater. Eng. Perform., 2016, 25, p 1781–1793

    Article  Google Scholar 

  8. J.W. Zhao, Z.Y. Jiang, and C.S. Lee, Effect of Tungsten on the Hydrogen Embrittlement Behavior of Microalloyed Steel, Corros. Sci., 2014, 82, p 380–391

    Article  Google Scholar 

  9. Z.Y. Cui, Z.Y. Liu, L.W. Wang, H.C. Ma, C.W. Du, X.G. Li, and X. Wang, Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions, J. Mater. Eng. Perform., 2015, 24, p 4400–4408

    Article  Google Scholar 

  10. Y.S. Choi, S. Nesic, and S. Ling, Effect of H2S on the CO2 Corrosion of Carbon Steel in Acidic Solutions, Electrochim. Acta, 2011, 56, p 1752–1760

    Article  Google Scholar 

  11. S. Serna, B. Campillo, and J.L. Albarrán, Crack Growth in Microalloyed Pipeline Steels for Sour Gas Transport, J. Mater. Eng. Perform., 2005, 14, p 224–228

    Article  Google Scholar 

  12. P.P. Bai, H. Zhao, S.Q. Zheng, and C.F. Chen, Initiation and Developmental Stages of Steel Corrosion in Wet H2S Environments, Corros. Sci., 2015, 93, p 109–119

    Article  Google Scholar 

  13. A. Pfennig, P. Zastrow, and A. Kranzmann, Influence of Heat Treatment on the Corrosion Behavior of Stainless Steels during CO2-Sequestration into Saline Aquifer, Int. J. Greenh. Gas Control, 2013, 15, p 213–224

    Article  Google Scholar 

  14. I.S. Molchan, G.E. Thompson, R. Lindsay, P. Skeldon, V. Likodimos, GEm Romanos, P. Falaras, G. Adamova, B. Iliev, and T.J.S. Schubert, Corrosion Behaviour of Mild Steel in 1-Alkyl-3-Methylimidazolium Tricyanomethanide Ionic Liquids for CO2 Capture Applications, RSC Adv., 2014, 4, p 5300–5311

    Article  Google Scholar 

  15. A. Pfennig and A. Kranzmann, Reliability of Pipe Steels with Different Amounts of C and Cr during Onshore Carbon Dioxide Injection, Int. J. Greenh. Gas Control, 2011, 5, p 757–769

    Article  Google Scholar 

  16. S.D. Kenarsari, D.L. Yang, G.D. Jiang, S.J. Zhang, J.J. Wang, A.G. Russell, Q. Wei, and M.H. Fan, Review of Recent Advances in Carbon Dioxide Separation and Capture, RSC Adv., 2013, 3, p 22739–22773

    Article  Google Scholar 

  17. X.Y. Ji and C. Zhu, A SAFT Equation of State for the H2S-CO2-H2O-NaCl System and Applications for CO2-H2S Transportation and Geological Storage, Energy Procedia, 2013, 37, p 3780–3791

    Article  Google Scholar 

  18. X.Y. Ji and C. Zhu, Predicting Possible Effects of H2S Impurity on CO2 Transportation and Geological Storage, Environ. Sci. Technol., 2013, 47, p 55–62

    Article  Google Scholar 

  19. L. Wei, X.L. Pang, and K.W. Gao, Effect of Small Amount of H2S on the Corrosion Behavior of Carbon Steel in the Dynamic Supercritical CO2 Environments, Corros. Sci., 2016, 103, p 132–144

    Article  Google Scholar 

  20. W.F. Li, Y.J. Zhou, and Y. Xue, Corrosion Behavior of 110S Tube Steel in Environments of High H2S and CO2 Content, J. Iron Steel Res. Int., 2012, 19, p 59–65

    Article  Google Scholar 

  21. C.Q. Ren, D.X. Liu, Z.Q. Bai, and T.H. Li, Corrosion Behavior of Oil Tube Steel in Simulant Solution with Hydrogen Sulfide and Carbon Dioxide, Mater. Chem. Phys., 2005, 93, p 305–309

    Article  Google Scholar 

  22. D. Jingen, Y. Wei, L. Xiaorong, and D. Xianqin, Influences of H2S Content on CO2 Corrosion Behaviors of N80 Tubing Steel, Pet. Sci. Technol., 2011, 29, p 1387–1396

    Article  Google Scholar 

  23. D.P. Li, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and M.L. Liu, Effect of H2S Concentration on the Corrosion Behavior of Pipeline Steel under the Coexistence of H2S and CO2, Int. J. Min. Metall. Mater., 2014, 21, p 388–394

    Article  Google Scholar 

  24. Z.F. Yin, L. Liu, Y.Q. Zhang, K. Wang, and S.D. Zhu, Characteristics and Mechanism of Corrosion Film Formation on Antisulphur Steels in CO2/H2S Environments, Corros. Eng. Sci. Technol., 2012, 47, p 138–144

    Article  Google Scholar 

  25. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, and M.S. Li, Influence of Alloyed Chromium on the Atmospheric Corrosion Resistance of Weathering Steels, Corros. Sci., 2013, 74, p 424–429

    Article  Google Scholar 

  26. ASTM Standard G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA, 2003

  27. Q.L. Wu, Z.H. Zhang, X.M. Dong, and J.Q. Yang, Corrosion Behavior of Low-Alloy Steel Containing 1% Chromium in CO2 Environments, Corros. Sci., 2013, 75, p 400–408

    Article  Google Scholar 

  28. D.A. López, T. Pérez, and S.N. Simison, The Influence of Microstructure and Chemical Composition of Carbon and Low Alloy Steels in CO2 Corrosion. A State-of-the-Art Appraisal, Mater. Des., 2003, 24, p 561–575

    Article  Google Scholar 

  29. Z.G. Liu, X.H. Gao, L.X. Du, J.P. Li, P. Li, and R.D.K. Misra, Comparison of Corrosion Behaviors of Low-Alloy Steel Exposed to Vapor-Saturated H2S/CO2 and H2S/CO2-Saturated Brine Environments, Mater. Corros., 2016, doi:10.1002/maco.201609165

    Google Scholar 

  30. Z.J. Zhang and X.Y. Chen, Magnetic Greigite (Fe3S4) Nanomaterials: Shape-Controlled Solvothermal Synthesis and Their Calcination Conversion into Hematite (α-Fe2O3), J. Alloys Compd., 2009, 488, p 339–345

    Article  Google Scholar 

  31. F.X. Shi, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and H. Li, Polymorphous FeS Corrosion Products of Pipeline Steel Under Highly Sour Conditions, Corros. Sci., 2016, 102, p 103–113

    Article  Google Scholar 

  32. Y. El Mendili, A. Abdelouas, H. El Hajj, and J.F. Bardeau, Phase Transitions of Iron Sulphides Formed by Steel Microbial Corrosion, RSC Adv., 2013, 3, p 26343–26351

    Article  Google Scholar 

  33. J.W. Tang, Y.W. Shao, and J.B. Guo, The Effect of H2S Concentration on the Corrosion Behavior of Carbon Steel at 90 °C, Corros. Sci, 2010, 52, p 2050–2053

    Article  Google Scholar 

  34. P. Taylor, The Stereochemistry of Iron Sulfides—A Structural Rationale for the Crystallization of Some Meta-Stable Phases from Aqueous Solution, Am. Mineral, 1980, 65, p 1026–1030

    Google Scholar 

  35. D. Rickard and G.W. Luther, Chemistry of Iron Sulfides, Chem. Rev., 2007, 107, p 514–562

    Article  Google Scholar 

  36. J.S. Smith and J.D.A. Miller, Nature of Sulfides and the Corrosion Effect on Ferrous Metals: A Review, Br. Corros. J., 1975, 10, p 136–143

    Article  Google Scholar 

  37. H.Y. Ma, X.L. Chen, G.Q. Li, S.H. Chen, and Z.L. Quan, The Influence of Hydrogen Sulfide on Corrosion of Iron under Different Conditions, Corros. Sci, 2000, 42, p 1669–1683

    Article  Google Scholar 

  38. Y.L. Li, R.A. Van Santen, and T. Weber, High-Temperature FeS-FeS2 Solid-State Transition: Reaction of Solid Mackinawite with Gaseous H2S, J. Solid State Chem., 2008, 181, p 3151–3162

    Article  Google Scholar 

  39. M. Mullet, S. Boursiquot, and M. Abdelmoula, Surface Chemistry and Structural Properties of Mackinawite, Geochim. Cosmochim. Acta, 2002, 5, p 829–836

    Article  Google Scholar 

  40. J.B. Sardisco and R.E. Pitts, Corrosion of Iron in an H2S-CO2-H2O System Mechanism of Sulfide Film Formation and Kinetic of Corrosion Reaction, Corrosion, 1965, 21, p 245–253

    Article  Google Scholar 

  41. J.B. Sardisco and R.E. Pitts, Corrosion of Iron in an H2S-CO2-H2O System Composition and Protectiveness of the Sulfide Film as a Function of pH, Corrosion, 1965, 21, p 350–354

    Article  Google Scholar 

  42. M. Gao, X. Pang, and K. Gao, The Growth Mechanism of CO2 Corrosion Product Films, Corros. Sci., 2011, 53, p 557–568

    Article  Google Scholar 

  43. O. Yevtushenko, D. Bettge, S. Bohraus, R. Bäßler, A. Pfennig, and A. Kranzmann, Corrosion Behavior of Steels for CO2 Injection, Process. Saf. Environ., 2014, 92, p 108–118

    Article  Google Scholar 

  44. L.N. Xu, B. Wang, J.Y. Zhu, W. Li, and Z.Y. Zheng, Effect of Cr Content on the Corrosion Performance of Low-Cr Alloy Steel in a CO2 Environment, Appl. Surf. Sci., 2016, 379, p 39–46

    Article  Google Scholar 

  45. Q.Y. Wang, X.Z. Wang, H. Luo, and J.L. Luo, Study on Corrosion Behaviors of Ni-Cr-Mo Laser Coating, 316 Stainless Steel and X70 Steel in Simulated Solutions with H2S and CO2, Surf. Coat. Tech, 2016, 291, p 250–257

    Article  Google Scholar 

  46. A.E. Yaniv, J.B. Lumsden, and R.W. Staehle, The Composition of Passive Films on Ferritic Stainless Steels, J. Electrochem. Soc, 1977, 124, p 490–496

    Article  Google Scholar 

  47. J.R. Hayes, J.J. Gray, A.W. Szmodis, and C.A. Orme, Influence of Chromium and Molybdenum on the Corrosion of Nickel-Based Alloys, Corrosion, 2006, 62, p 491–500

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from National High Technology Research and Development Program of China (2015AA03A501) and Natural Science Foundation of China (NSFC, 51274063) and gratefully acknowledge support from R.D.K. Misra, who is from the University of Texas at El Paso, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Gao, X., Du, L. et al. Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution. J. of Materi Eng and Perform 26, 1010–1017 (2017). https://doi.org/10.1007/s11665-017-2526-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2526-9

Keywords

Navigation