Skip to main content
Log in

Effect of Alternating Current on Passive Film and Corrosion Behavior of Pipeline Steel with Different Microstructures in Carbonate/Bicarbonate Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The relationship between microstructure and alternating current (AC) corrosion behavior of X80 pipeline steel was systematically studied in CO32−/HCO3 solution using corrosion tests and surface analysis technology. The results show that AC prevents the formation of passive film and decreases its stability. AC generates a different damage effect to the passive film on steels with various microstructures. The passive film of normalized microstructure steel has a relatively high stability, followed by the hot-rolled steel, and that of the annealed sample is the most unstable. The influence of AC on passive film of steels with various microstructures causes a difference in the corrosion resistance. The corrosion form of steels with different microstructures applied with AC displays the obvious characteristic of localized corrosion. The normalized microstructure has the optimum corrosion resistance, followed by the hot-rolled steel, and the annealed steel possesses the worst corrosion resistance. The difference in the AC corrosion behavior of X80 steels may be related to the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Hosokawa, F. Kajiyama, and T. Fukuoka, Alternating Current Corrosion Risk Arising from Alternating Current-Powered Rail Transit Systems on Cathodically Protected Buried Steel Pipelines and Its Measures, Corrosion, 2004, 60, p 408–413

    CAS  Google Scholar 

  2. S.B. Lalvani and G. Zhang, The Corrosion of Carbon Steel in A Chloride Environment Due to Periodic Voltage Modulation: Part I, Corros. Sci., 1995, 37, p 1567–1582

    CAS  Google Scholar 

  3. S.B. Lalvani and G. Zhang, The Corrosion of Carbon Steel in A Chloride Environment Due to Periodic Voltage Modulation: Part II, Corros. Sci., 1995, 37, p 1583–1598

    CAS  Google Scholar 

  4. J. Xu, Y.L. Bai, T.Q. Wu, M.C. Yan, C.K. Yun, and C. Sun, Effect of Elastic Stress and Alternating Current on Corrosion of X80 Pipeline Steel in Simulated Soil Solution, Eng. Fail. Anal., 2019, 100, p 192–205

    CAS  Google Scholar 

  5. H.X. Wan, D.D. Song, C.W. Du, Z.Y. Liu, and X.G. Li, Effect of Alternating Current and Bacillus Cereus on the Stress Corrosion Behavior and Mechanism of X80 Steel in a Beijing Soil Solution, Bioelectrochemistry, 2019, 127, p 49–58

    CAS  Google Scholar 

  6. L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du, and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution—Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86, p 213–222

    CAS  Google Scholar 

  7. L.Y. Xu, X. Su, and Y.F. Cheng, Effect of Alternating Current on Cathodic Protection on Pipelines, Corros. Sci., 2013, 66, p 263–268

    CAS  Google Scholar 

  8. H.R. Wang, C.W. Du, Z.Y. Liu, L.T. Wang, and D. Ding, Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel, Materials, 2017, 10, p 851–871

    Google Scholar 

  9. L.Y. Xu, X. Su, Z.X. Yin, Y.H. Tang, and Y.F. Cheng, Development of A Real-Time AC/DC Data Acquisition Technique for Studies of AC Corrosion of Pipelines, Corros. Sci., 2012, 61, p 215–223

    CAS  Google Scholar 

  10. X.H. Wang, Z.Q. Wang, Y.C. Chen, X.T. Song, and C. Xu, Research on the Corrosion Behavior of X70 Pipeline Steel Under Coupling Effect of AC + DC and Stress, J. Mater. Eng. Perform., 2019, 28, p 1958–1968

    CAS  Google Scholar 

  11. A.Q. Fu and Y.F. Cheng, Effects of Alternating Current on Corrosion of A Coated Pipeline Steel in A Chloride-Containing Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52, p 612–619

    CAS  Google Scholar 

  12. Y.B. Guo, T. Meng, D.G. Wang, H. Tan, and R.Y. He, Experimental Research on the Corrosion of X Series Pipeline Steels under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98

    CAS  Google Scholar 

  13. D. Kuang and Y.F. Cheng, Understand the AC Induced Pitting Corrosion on Pipelines in Both High pH and Neutral pH Carbonate/Bicarbonate Solutions, Corros. Sci., 2014, 85, p 304–310

    CAS  Google Scholar 

  14. L.W. Wang, L.J. Cheng, J.R. Li, Z.F. Zhu, S.W. Bai, and Z.Y. Cui, Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment, Materials, 2018, 11, p 465–483

    Google Scholar 

  15. M. Zhu, C.W. Du, X.G. Li, Z.Y. Liu, H. Li, and D.W. Zhang, Effect of AC on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in Carbonate/Bicarbonate Solution, Corros. Sci., 2014, 87, p 224–232

    CAS  Google Scholar 

  16. M. Zhu, C.W. Du, X.G. Li, Z.Y. Liu, S.R. Wang, J.K. Li, and D.W. Zhang, Effect of AC Current Density on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution, Electrochim. Acta, 2014, 117, p 351–359

    CAS  Google Scholar 

  17. D.T. Chin and S. Venkatesh, A Study of Alternating Voltage Modulation on the Polarization of Mild Steel, J. Electrochem. Soc., 1979, 126, p p1908–p1913

    Google Scholar 

  18. S. Goidanich, L. Lazzari, M. Ormellese, and A.C. Corrosion, Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52, p 916–922

    CAS  Google Scholar 

  19. H.Y. Xiao and S.B. Lalvani, A Linear Model of Alternating Voltage-Induced Corrosion, J. Electrochem. Soc., 2008, 155, p C69–C74

    CAS  Google Scholar 

  20. M. Yunovich, and N.G. Thompson, AC Corrosion: Mechanism and Proposed Model Proceedings of IPC (International Pipeline Conference) 2004. Paper 0574. ASME International, Calgary; 2004 (IPC 2004. Paper no. 0574, ASME, Calgary, 2004)

  21. S.B. Lalvani and X. Lin, A Theoretical Approach for Predicting AC-Induced Corrosion, Corros. Sci., 1994, 36, p 1039–1046

    CAS  Google Scholar 

  22. S.B. Lalvani and X. Lin, A Revised Model for Predicting Corrosion of Materials Induced by Alternating Voltages, Corros. Sci., 1996, 38, p 1709–1719

    CAS  Google Scholar 

  23. S. Goidanich, L. Lazzari, M. Ormellese, and A.C. Corrosion, Part 1: Effects on Overpotentials of Anodic and Cathodic Processes, Corros. Sci., 2010, 52, p 491–497

    CAS  Google Scholar 

  24. U. Bertocci, AC Induced Corrosion: The Effect of an Alternating Voltage on Electrodes Under Charge-Transfer Control, Corrosion, 1979, 35, p 211–215

    CAS  Google Scholar 

  25. J.Y. Zhu, L.N. Xu, Z.C. Feng, G.S. Frankel, M.X. Lu, and W.C. Chang, Galvanic Corrosion of a Welded Joint in 3Cr Low Alloy Pipeline Steel, Corros. Sci., 2016, 111, p 391–403

    CAS  Google Scholar 

  26. Q. Qiao, G.X. Cheng, W. Wu, Y. Li, H. Huang, and Z.F. Wei, Failure Analysis of Corrosion at an Inhomogeneous Welded Joint in a Natural Gas Gathering Pipeline Considering the Combined Action of Multiple Factors, Eng. Fail. Anal., 2016, 64, p 126–143

    CAS  Google Scholar 

  27. S. Bordbar, M. Alizadeh, and S.H. Hashemi, Effects of Microstructure Alteration on Corrosion Behavior of Welded Joint in API, X70 Pipeline Steel, Mater. Des., 2013, 45, p 597–604

    CAS  Google Scholar 

  28. V.A. Alves and C.M.A. Brett, Characterization of Passive Films Formed on Mild Steels in Bicarbonate Solution by EIS, Electrochim. Acta, 2002, 47, p 2081–2091

    CAS  Google Scholar 

  29. J. Sikora, E. Sikora, and D.D. Macdonald, Electronic Structure of the Passive Film on Tungsten, Electrochim. Acta, 2000, 45, p 1875–1883

    CAS  Google Scholar 

  30. C.A. Gercasi, M.E. Folquer, A.E. Vallejo, and P.E. Alvarez, Electron Transfer Across Anodic Films Formed on Tin in Carbonate-Bicarbonate Buffer Solution, Electrochim. Acta, 2005, 50, p 1113–1119

    Google Scholar 

  31. P. Schmuki and H. Bohni, Illumination Effects on the Stability of the Passive Film on Iron, Electrochim. Acta, 1995, 40, p 775–783

    CAS  Google Scholar 

  32. W.S. Li and J.L. Luo, Uniformity of Passive Films Formed on Ferrite and Martensite by Different Inorganic Inhibitors, Corros. Sci., 2002, 44, p p1695–p1712

    Google Scholar 

  33. A. Goossens, M. Vazquez, and D.D. Macdonald, The Nature of Electronic States in Anodic Zirconium Oxide Films Part 1: The Potential Distribution, Electrochim. Acta, 1996, 41, p 35–45

    CAS  Google Scholar 

  34. S. Ningshen, U. Kamachimudali, V. Mittal, and H. Khatak, Semiconducting and Passive Film Properties of Nitrogen-Containing Type 316LN Stainless Steels, Corros. Sci., 2007, 49, p 481–496

    CAS  Google Scholar 

  35. C. Sunseri, S. Piazza, and F. Quarto, Photocurrent Spectroscopic Investigations of Passive Films on Chromium, J. Electrochem. Soc., 1990, 137, p 2411–2417

    CAS  Google Scholar 

  36. H. Luo, C.F. Dong, X.G. Li, and K. Xiao, The Electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride, Electrochim. Acta, 2012, 64, p 211–220

    CAS  Google Scholar 

  37. H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Characterization of Passive Film on 2205 Duplex Stainless Steel in Sodium Thiosulphate Solution, Appl. Surf. Sci., 2011, 258, p 631–639

    CAS  Google Scholar 

  38. K. Jüttner, Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces, Electrochim. Acta, 1990, 35, p 1501–1508

    Google Scholar 

  39. D.J. Blackwood, Influence of the Space-Charge Region on Electrochemical Impedance Measurements on Passive Oxide Films on Titanium, Electrochim. Acta, 2000, 46, p 563–569

    CAS  Google Scholar 

  40. L.W. Wang, C.W. Du, Z.Y. Liu, X.H. Wang, and X.G. Li, Influence of Carbon on Stress Corrosion Cracking of High Strength Pipeline Steel, Corros. Sci., 2013, 76, p 486–493

    CAS  Google Scholar 

  41. D. Clover, B. Kinsella, B. Pejcic, and R. Marco, The Influence of Microstructure on the Corrosion Rate of Various Carbon Steels, J. Appl. Electrochem., 2005, 35, p 139–149

    CAS  Google Scholar 

  42. H.J. Cleary and N.D. Greene, Electrochemical Properties of Fe and Steel, Corros. Sci., 1969, 9, p 3–13

    CAS  Google Scholar 

  43. D.N. Staicopolus, The Role of Cementite in the Acidic Corrosion of Steel, J. Electrochem. Soc., 1963, 110, p 1121–1124

    CAS  Google Scholar 

  44. Y.P. Wang, X.R. Zuo, and J.L. Li, Corrosion Resistance of the Welded Joint of Submarine Pipeline Steel with Ferrite Plus Bainite Dual-Phase Microstructure, Steel Res. Int., 2015, 86, p 1260–1270

    CAS  Google Scholar 

  45. G. Ma, X.R. Zuo, L. Hong, Y.L. Ji, J.Y. Dong, and H.H. Wang, Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea, Acta Metall. Sin., 2018, 54, p 527–536

    CAS  Google Scholar 

  46. F. Mohammadi, F.F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API, X80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Zhejiang Province (No. LY18E010004), and the National R&D Infrastructure and Facility Development Program of China (No. 2005DKA10400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Yang, J.L., Chen, Y.B. et al. Effect of Alternating Current on Passive Film and Corrosion Behavior of Pipeline Steel with Different Microstructures in Carbonate/Bicarbonate Solution. J. of Materi Eng and Perform 29, 423–433 (2020). https://doi.org/10.1007/s11665-019-04541-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04541-x

Keywords

Navigation