Skip to main content
Log in

Creep Behavior of P92 Steel in the Steam Environment at 600 °C Using Miniature Three-Point Bend Test

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A miniature three-point bend test system with steam-circulating device was introduced in order to study the interaction behavior between steam oxidation and tensile, compressive creep of P92 steel at 600 °C. It was observed that the formation of oxidation scale accelerated creep deformation which induced by reducing the effective stress on underlying metal. The oxidation mechanisms as well as oxidation kinetics on tensile and compressive surface were examined by scanning electron microscope, x-ray diffraction and energy-dispersive spectrometer. It can be revealed that applied tensile and compressive loading had strong influence on oxidation rate rather than on oxidation mechanism. Furthermore, a mechanical model coupled with oxidation scale growth was proposed to predict the deformation rate of the miniature three-point specimen which could agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

T :

Thickness change in material

A :

Growth rate constant

τ:

Exposure time

P :

Applied loading

m :

Power exponent

h :

Specimen thickness

b :

Specimen width

l :

Spacing between two rollers in three-point bending test system

d :

Bending displacement

\(\dot{d}\) :

Creep strain rate in steady state

Ω:

Volume parameter

β:

Volume constant

t :

Nominal time for diffusion process

ζ:

Deformation of the neutral axis

Ei :

Elastic modulus

ζi :

The space dimension along the thickness direction

h(t):

Thickness reduction in substrate

k :

Curvature radius of specimen

ε:

Bending strain

\({\dot{\varepsilon }}\) :

Creep strain rate

M :

Bending moment

B :

Creep constant

n :

Creep strain constant

σ:

Stress

α:

Creep parameter ratio of oxidation

References

  1. W.W. Peng, W.D. Zeng, Y.W. Zhang, C.L. Shi, B. Quan, and J. Wu, Oxidation Behavior and Effect of Oxidation on Microstructure and Tensile Properties of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, J. Alloys Compd., 2013, 577, p 633–642

    Article  Google Scholar 

  2. C.H. Zhou, H.T. Ma, and L. Wang, Effect of Mechanical Loading on the Oxidation Kinetics and Oxide-Scale Failure of Pure Ni, Oxid. Met., 2008, 70(5-6), p 287–294

    Article  Google Scholar 

  3. M.C. Rezende, L.S. Araujo, S.B. Gabriel, J. Dille, and L.H. de Almeida, Oxidation Assisted Intergranular Cracking Under Loading at Dynamic Strain Aging Temperatures in Inconel 718 Superalloy, J. Alloys Compd., 2015, 643, p S256–S259

    Article  Google Scholar 

  4. B. Ter-Ovanessian, D. Poquillon, J. Cloue, and E. Andrieu, Influence of Local Mechanical Loading Paths on the oxidation Assisted Crack Initiation of Alloy 718, Mater. Sci. Eng. A, 2012, 533, p 43–49

    Article  Google Scholar 

  5. E. Yamaki and K. Kikuchi, A Stability of Oxide Layers Formed in LBE on HCM12A to External Loading, J. Nucl. Mater., 2010, 398(1-3), p 153–159

    Article  Google Scholar 

  6. N. Wu, K. Jung, N.M. Yanar, F.S. Pettit, G.R. Holcomb, B.H. Howard, and G.H. Meier, The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys, Oxid. Met., 2013, 79(5), p 461–472

    Google Scholar 

  7. N.Q. Zhang, Z.L. Zhu, H. Xu, X.P. Mao, and J. Li, Oxidation of Ferritic and Ferritic-Martensitic Steels in Flowing and Static Supercritical Water, Corros. Sci., 2016, 103, p 124–131

    Article  Google Scholar 

  8. M. Schütze, The Healing Behavior of Protective Oxide Scales on Heat-Resistant Steels After Cracking Under Tensile Strain, Oxid. Met., 1986, 25(5-6), p 409–421

    Article  Google Scholar 

  9. X.Y. Zhong, X.Q. Wu, and E.H. Han, Effects of Exposure Temperature and Time on Corrosion Behavior of a Ferritic-Martensitic Steel P92 in Aerated Supercritical Water, Corros. Sci., 2015, 90, p 511–521

    Article  Google Scholar 

  10. X. Guo, K. Kusabiraki, and S. Saji, High-Temperature Scale Formation of Fe-36%Ni Bicrystals in Air, Oxid. Met., 2002, 58(5-6), p 589–605

    Article  Google Scholar 

  11. R. Rolls and M.H. Shahhosseini, Effect of Creep on the Oxidation Characteristics of Fe-Si Alloys at 973-1073 K, Oxid. Met., 1982, 18(3-4), p 115–126

    Article  Google Scholar 

  12. X. Guo and K. Kusabiraki, High Temperature Oxidation of the Bicrystals of Incoloy Alloy 909 and an Fe-36% Ni Alloy in Air Under Tensile Stress, Mater. High Temp., 2001, 18(1), p 57–64

    Article  Google Scholar 

  13. C.H. Zhou, H.T. Ma, and L. Wang, Comparative Study of Oxidation Kinetics for Pure Nickel Oxidized Under Tensile and Compressive Stress, Corros. Sci., 2010, 52(1), p 210–215

    Article  Google Scholar 

  14. D. Satyanarayana, G. Malakondaiah, and D.S. Sarma, Effect of Prior Oxidation on Creep Behavior of NiAl-Hardened Austenitic Steel, Metall. Mater. Trans. A, 2003, 34(11), p 2579–2590

    Article  Google Scholar 

  15. E. Chateau and L. Rémy, Oxidation-Assisted Creep Damage in a Wrought Nickel-Based Superalloy: Experiments and Modeling, Mater. Sci. Eng. A, 2010, 527(7-8), p 1655–1664

    Article  Google Scholar 

  16. W.G. Kim, S.N. Yin, G.G. Lee, Y.W. Kim, and S.J. Kim, Creep Oxidation Behavior and Creep Strength Prediction for Alloy 617, Int. J. Press. Vessels Pip., 2010, 87(6), p 289–295

    Article  Google Scholar 

  17. Y.H. Suo, X.X. Yang, and S.P. Shen, Residual Stress Analysis Due to Chemomechanical Coupled Effect, Intrinsic Strain Creep Deformation During Oxidation, Oxid. Met, 2015, 84(3), p 413–427

    Article  Google Scholar 

  18. K. Sawada, M. Fujitsuka, M. Tabuchi, and K. Kimura, Effect of Oxidation on the Creep Rupture Life of ASME T23 Steel, Int. J. Press. Vessels Pip., 2009, 86(10), p 693–698

    Article  Google Scholar 

  19. J. Olbricht, M. Bismarck, and B. Skrotzki, Characterization of the Creep Properties of Heat Resistant 9-12% Chromium Steels by Miniature Specimen Testing, Mater. Sci. Eng. A, 2013, 585, p 335–342

    Article  Google Scholar 

  20. V. Tolpygo, J. Dryden, and D. Clarke, Determination of the Growth Stress and Strain in α-Al2O3 Scales During the Oxidation of Fe-22Cr-4.8Al-0.3Y Alloy, Acta Mater., 1998, 46(3), p 927–937

    Article  Google Scholar 

  21. L. Chen, Creep-Fatigue Behavior and Life Prediction of P92 Steel at High Temperature. Master’s Thesis (in Chinese), East China University of Science and Technology, 2010.

  22. K. Yin, S.Y. Qiu, R. Tang, Q. Zhang, and L.F. Zhang, Corrosion behavior of ferritic/martensitic steel P92 in supercritical water, J. Supercrit. Fluids, 2009, 50(3), p 235–239

    Article  Google Scholar 

  23. P. Berger, L. Gaillet, R. El Tahhann, G. Moulin, and M. Viennot, Oxygen diffusion studies in oxide scales thermally grown or deposited on mechanically loaded metallic surface (MS-P2), Nucl. Instrum. Methods Phys. Res. Sect. B, 2001, 181(1-4), p 382–388

    Article  Google Scholar 

  24. H.E. Evans, D.J. Norfolk, and T. Swan, Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers, J. Electrochem. Soc., 1978, 125(7), p 1180–1185

    Article  Google Scholar 

  25. A.M. Limarga and D.S. Wilkinson, A model for the effect of creep deformation and intrinsic growth stress on oxide/nitride scale growth rates with application to the nitridation of γ-TiAl, Mater. Sci. Eng. A, 2006, 415(1-2), p 94–103

    Article  Google Scholar 

  26. A.M. Limarga and D.S. Wilkinson, Modeling the interaction between creep deformation and scale growth process, Acta Mater., 2007, 55(1), p 189–201

    Article  Google Scholar 

  27. B.X. Xu, Z.F. Yue, and G. Eggeler, A numerical procedure for retrieving material creep properties from bending creep tests, Acta Mater., 2007, 55(18), p 6275–6283

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (51205132) and the National Key Scientific Instrument and Equipment Development Project (2012YQ220233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Zhen Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Xuan, FZ. Creep Behavior of P92 Steel in the Steam Environment at 600 °C Using Miniature Three-Point Bend Test. J. of Materi Eng and Perform 25, 5440–5449 (2016). https://doi.org/10.1007/s11665-016-2374-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2374-z

Keywords

Navigation