Skip to main content
Log in

Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker’s micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Santo and M. Rameshni, The Challenges of Designing Grass Root Sulphur Recovery Units with a Wide Range of H2S Concentration from Natural Gas, J. Nat. Gas Sci. Eng., 2014, 18, p 137–148

    Article  Google Scholar 

  2. Z.F. Yin, W.Z. Zhao, Z.Q. Bai, Y.R. Feng, and W.J. Zhou, Corrosion Behavior of SM 80SS Tube Steel in Stimulant Solution Containing H2S and CO2, Electrochim. Acta., 2008, 53(10), p p3690–p3700

    Article  Google Scholar 

  3. W.F. Li, Y. Jun Zhou, and Y. Xue, Corrosion Behavior of 110S Tube Steel in Environments of High H2S and CO2 Content, J. Iron Steel Res. Int., 2012, 19(12), p 59–65

    Article  Google Scholar 

  4. H. Yagi and J.B. Wagner, Chemical Diffusion and Electrical Conductivity of Ni3xS2, Oxid. Met., 1982, 18(1–2), p 41–54

    Article  Google Scholar 

  5. W. Kai, T.W. Lee, and C.H. Wu, Sulfidation Behavior of Inconel 738 Superalloy at 500-900°C, Oxid. Met., 2001, 56(1-2), p 51–71

  6. M. Matsumoto and Y. Umeda, An Analysis of Remanufacturing Practices in Japan, J. Remanuf., 2011, 1(1), p 2

    Article  Google Scholar 

  7. S. Huang, D. Sun, and W. Wang, Microstructures and Properties of Ni Based Composite Coatings Prepared by Plasma Spray Welding with Mixed Powders, Int. J. Refract. Met. Hard Mater., 2015, 52, p 36–43

    Article  Google Scholar 

  8. J.H. Hwang, M.S. Han, D.Y. Kim, and J.G. Youn, Tribological Behavior of Plasma Spray Coatings for Marine Diesel Engine Piston Ring and Cylinder Liner, J. Mater. Eng. Perform., 2006, 15(3), p 328–335

    Article  Google Scholar 

  9. S. Huang, D. Sun, W. Wang, and H. Xu, Microstructures and Properties of In-situ TiC Particles Reinforced Ni-based Composite Coatings Prepared by Plasma Spray Welding, Ceram. Int., 2015, 241(9), p 12202–12210

    Article  Google Scholar 

  10. K. Tanaka, Elastic/Plastic Indentation Hardness and Indentation Fracture Toughness: The Inclusion Core Model, J. Mater. Sci., 1987, 22(4), p 1501–1508

    Article  Google Scholar 

  11. W. Sun, S. Nesic, and S. Papavinasam, Kinetics of Corrosion Layer Formation. Part 2-lron Sulfide and Mixed Iron Sulfide/Carbonate Layers in Carbon Dioxide/Hydrogen Sulfide Corrosion, Corrosion, 2008, 64(7), p 586–599

    Article  Google Scholar 

  12. R.B. Alvarez, H.J. Martin, M.F. Horstemeyer, M.Q. Chandler, N. Williams, P.T. Wang, and A. Ruiz, Corrosion Relationships as a Function of Time and Surface Roughness on a Structural AE44 Magnesium Alloy, Corros. Sci., 2010, 52(5), p 1635–1648

    Article  Google Scholar 

  13. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, and K. Nagai, Nucleation of Acicular Ferrite on Sulfide Inclusion during Rapid Solidification of Low Carbon Steel, ISIJ Int., 2007, 47(12), p 1781–1788

    Article  Google Scholar 

  14. N.S. Cyril and A. Fatemi, Experimental Evaluation and Modeling of Sulfur Content and Anisotropy of Sulfide Inclusions on Fatigue Behavior of Steels, Int. J. Fatigue, 2009, 31(3), p p526–p537

    Article  Google Scholar 

  15. Y. Kanbe, A. Karasev, H. Todoroki, and P.G. Jönsson, Analysis of Largest Sulfide Inclusions in Low Carbon Steel by Using Statistics of Extreme Values, Steel Res. Int., 2011, 82(4), p p313–p322

    Article  Google Scholar 

  16. Y. Murakata, M.G. Sung, K. Sassa, and S. Asai, Visualization of Collision Behavior of Particles Simulating Inclusions in A Turbulent Molten Steel Flow and Its Theoretical Analysis, ISIJ Int., 2007, 47(5), p 633–637

    Article  Google Scholar 

  17. D.J. Ha, H.K. Sung, J.W. Park, and S. Lee, Effects of Alloying Elements on Microstructure, Hardness, Wear Resistance, and Surface Roughness of Centrifugally Cast High-speed Steel Rolls, Metall. Mater. Trans. A Phys. Metall Mater. Sci., 2009, 40(11), p p2568–p2577

    Article  Google Scholar 

  18. D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings, Scr. Mater., 2003, 48(8), p 1067–1072

    Article  Google Scholar 

  19. K.T. Kim, S.I. Cha, and S.H. Hong, Hardness and Wear Resistance of Carbon Nanotube Reinforced Cu Matrix Nanocomposites, Mater. Sci. Eng. A., 2007, 449(12), p 46–50

    Article  Google Scholar 

  20. D.H. Nam, J.H. Kim, S.I. Cha, S.I. Jung, J.K. Lee, H.M. Park, H.D. Park, and S.H. Hong, Hardness and Wear Resistance of Carbon Nanotube Reinforced Aluminum-Copper Matrix Composites, J. Nanosci. Nanotechnol., 2014, 14(12), p p9134–p9138

    Article  Google Scholar 

  21. G. Tagliavia, M. Porfiri, and N. Gupta, Analysis of Hollow Inclusion-Matrix Debonding in Particulate Composites, Int. J. Solids Struct., 2010, 47(16), p 2164–2177

    Article  Google Scholar 

  22. P.C. Savalia, H.V. Tippur, and M.S. Kirugulige, A Numerical Study of Inclusion-Matrix Debonding in the Presence of a Nearby Crack, Eng. Fract. Mech., 2008, 75(5), p p926–p942

    Article  Google Scholar 

  23. Y.H. Zhao and G.J. Weng, A Theory of Inclusion Debonding and Its Influence on the Stress-Strain Relations of a Ductile Matrix Composite, Int. J. Damage Mech., 1995, 4(2), p 196–211

    Article  Google Scholar 

  24. P.C. Savalia and H.V. Tippur, A Study of Crack-inclusion Interactions and Matrix-inclusion Debonding Using Moiré Interferometry and Finite Element Method, Exp. Mech., 2007, 47(4), p p533–p547

    Article  Google Scholar 

  25. Q.H. Tang, D. Zhou, Y.L. Wang, and G.F. Liu, Laser Cleaning of Sulfide Scale on Compressor Impeller Blade, Appl. Surf. Sci., 2015, 355, p 334–340

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Major State Basic Research Development Program of China (973 Program) (No. 2011CB013400). The authors acknowledge the help provided by the Experimental Center of Materials Sciences, Hefei University of Technology, in conducting the SEM-EDS analysis of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zhou, D., Wang, Y.L. et al. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding. J. of Materi Eng and Perform 25, 5343–5351 (2016). https://doi.org/10.1007/s11665-016-2364-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2364-1

Keywords

Navigation