Skip to main content
Log in

Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n. The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Natesan, G. Venkatachari, and N. Palaniswamy, Kinetics of Atmospheric Corrosion of Mild Steel, Zinc, Galvanized Iron and Aluminium at 10 Exposure Stations in India, Corros. Sci., 2006, 48, p 3584–3608

    Article  Google Scholar 

  2. W. Han, C. Pan, Z.Y. Wang, and G.C. Yu, A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to Outdoor Wet–Dry Cyclic Condition, Corros. Sci., 2014, 88, p 89–100

    Article  Google Scholar 

  3. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the Corrosion Behavior of Low Alloy Steels in Wet/Dry Environments, Corros. Sci., 2000, 42, p 1611–1621

    Article  Google Scholar 

  4. H.E. Townsend, Effect of Alloying Elements on the Corrosion of Steel in Industrial Atmospheres, Corroison, 2001, 57, p 497–501

    Article  Google Scholar 

  5. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, A Study of the Evolution of Rust on Mo–Cu-Bearing Fire-Resistance Steel Submitted to Simulated Atmospheric Corrosion, Corros. Sci., 2012, 54, p 244–250

    Article  Google Scholar 

  6. J. Wang, Z.Y. Wang, and W. Ke, Characterization of rust Formed on Carbon Steel After Exposure to Open Atmosphere in Qinghai Salt Lake Region, Corros. Eng., Sci. Technol., 2012, 47, p 125–130

    Article  Google Scholar 

  7. T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The Role of Chloride Ion on the Atmospheric Corrosion of Steel and Corrosion Resistance of Sn-Bearing Steel, Corros. Sci., 2012, 62, p 34–41

    Article  Google Scholar 

  8. F. Samie, J. Tidblad, V. Kucera, and C. Leygraf, Atmospheric Corrosion Effect of HNO3-Comparison of Laboratory-Exposed Copper, Zinc and Carbon Steel, Atmos. Environ., 2007, 41, p 4888–4898

    Article  Google Scholar 

  9. T. Kamimura, S. Hara, and H. Miyuki, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812

    Article  Google Scholar 

  10. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and Protective Performance of Atmospheric Corrosion Product of Fe–Cr Alloy Film Analyzed by Mössbauer Spectroscopy and with Synchrotron Radiation x-rays, Corros. Sci., 2003, 45, p 381–394

    Article  Google Scholar 

  11. Y.T. Ma, Y. Li, and F.H. Wang, The Atmospheric Corrosion Kinetics of Low Carbon Steel in a Tropical Marine Environment, Corros. Sci., 2010, 52, p 1796–1800

    Article  Google Scholar 

  12. W. Han, C. Pan, Z.Y. Wang, and G.C. Yu, Initial Atmospheric Corrosion of Carbon Steel in Industrial Environment, J. Mater. Eng. Perform., 2015, 24, p 864–874

    Article  Google Scholar 

  13. K. Xiao, C.F. Dong, X.G. Li, and F.M. Wang, Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel, J. Iron. Steel Res. Int., 2008, 15, p 42–48

    Article  Google Scholar 

  14. W. Han, G.C. Yu, Z.Y. Wang, and J. Wang, Characterization of Initial Atmospheric Corrosion Carbon Steels by Field Exposure and Laboratory Simulation, Corros. Sci., 2007, 49, p 2920–2935

    Article  Google Scholar 

  15. B.Y.R. Surnam and C.V. Oleti, Atmospheric Corrosion in Mauritius, Corros. Eng., Sci. Technol., 2012, 47, p 446–455

    Article  Google Scholar 

  16. V. Diaz and C. Lopez, Discovering Key Meteorological Variables in Atmospheric Corrosion Through an Artificial Neural Network Model, Corros. Sci., 2007, 49, p 949–962

    Article  Google Scholar 

  17. T.T.N. Lan, N.T.P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi, and Y. Maeda, Atmospheric Corrosion of Carbon Steel Under Field Exposure in the Southern Part of Vietnam, Corros. Sci., 2006, 48, p 179–192

    Article  Google Scholar 

  18. F.I. Wei, Atmospheric Corrosion of Carbon Steels and Weathering Steels in Taiwan, Br. Corros. J., 1991, 26, p 209–214

    Article  Google Scholar 

  19. Y.T. Ma, Y. Li, and F.H. Wang, Weatherability of 09CuPCrNi Steel in a Tropical Marine Environment, Corros. Sci., 2009, 51, p 1725–1732

    Article  Google Scholar 

  20. M. Yamashita, H. Konishi, and T. Kozakura, In situ Observation of Initial Rust Formation Process on Carbon Steel Under Na2SO4 and NaCl Solution Films With Wet/Dry Cycles Using Synchrotron Radiation x-rays, Corro. Sci., 2005, 47, p 2492–2498

    Article  Google Scholar 

  21. K. Asami and M. Kikuchi, In-depth Distribution of Rusts on a Plain Carbon Steel and Weathering Steels Exposed to Coastal-Industrial Atmosphere for 17 years, Corros. Sci., 2003, 45, p 2671–2688

    Article  Google Scholar 

  22. F.R. Pérez, C.A. Barrero, A.R.H. Walker, K.E. García, and K. Nomura, Effects of Chloride Concentration, Immersion Time and Steel Composition on the Spinel Phase Formation, Mater. Chem. Phys., 2009, 117, p 214–223

    Article  Google Scholar 

  23. J.H. Dong, E.H. Han, and W. Ke, Introduction to Atmospheric Corrosion Research in China, Sci. Technol. Adv. Mater., 2007, 8, p 559–565

    Article  Google Scholar 

  24. G.C. Liu, J.H. Dong, E.H. Han, and W. Ke, Progress in Research on Rust Layer of Weathering Steel, Corros. Sci. Prot. Technol., 2006, 18, p 268–272

    Google Scholar 

  25. J. Dong, J.H. Dong, and E.H. Han, Corrosion Behavior of Rusted Mild Steel Under Means of Wet/Dry Alternate Conditions, Corros. Sci. Prot. Technol., 2006, 18, p 414–417

    Google Scholar 

  26. H. Antony, S. Perrin, P. Dillman, L. Legrand, and A. Chausse, Electrochemical Study of Indoor Atmospheric Corrosion Layers Formed on Ancient Iron Artifacts, Electrochim. Acta, 2007, 52, p 7754–7759

    Article  Google Scholar 

  27. X. Zhang, K. Xiao, C.F. Dong, J.S. Wu, X.G. Li, and Y.Z. Huang, In situ Raman Spectroscopy Study of Corrosion Products on the Surface of Carbon Steel in Solution Containing Cl and SO4 2−, Eng. Fail. Anal., 2011, 18, p 1981–1989

    Article  Google Scholar 

  28. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions, Corrosion, 2000, 56, p 935–941

    Article  Google Scholar 

  29. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of Corrosion of MnCuP Weathering Steel Submitted to Wet/Dry Cyclic Tests in a Simulated Coastal Atmosphere, Corros. Sci., 2012, 58, p 175–180

    Article  Google Scholar 

  30. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of Atmospheric Corrosion of MnCuP Weathering Steel in a Simulated Coastal-Industrial Atmosphere, Corros. Sci., 2012, 59, p 270–276

    Article  Google Scholar 

  31. W. Ke and J.H. Dong, Study on the Rusting Evolution and the Performance of Resisting to Atmospheric Corrosion for Mn–Cu Steel, Acta Metal. Sin., 2010, 46, p 1365–1378

    Article  Google Scholar 

  32. L. Wang, J.H. Dong, and W. Ke, Corrosion Behavior of MnCu Cost-effective Weathering Steel Under Cyclic Load in a Wet/Dry Cyclic Corrosion Environment, J. Chin. Soc. Corros. Prot., 2010, 30, p 1–6

    Google Scholar 

  33. T. Nishimura, Electrochemical Behavior and Structure of Rust Formed on Si- and Al-Bearing Steel After Atmospheric Exposure, Corros. Sci., 2010, 52, p 3609–3614

    Article  Google Scholar 

  34. J.J. Morfan and W. Stumm, Aquatic Chemistry, 2nd ed., Wiley, New York, 1981

    Google Scholar 

  35. M. Stratmann, K. Bohnenkamp, and H.-J. Engell, An Electrochemical Study of Phase Transition in Rust Layers, Corros. Sci., 1983, 23, p 969–985

    Article  Google Scholar 

  36. H. Tamura, The Role of Rusts in Corrosion and Corrosion Protection of Iron and Steel, Corros. Sci., 2008, 50, p 1872–1883

    Article  Google Scholar 

Download references

Acknowledgments

The investigation is supported by the National Science Fund of China under the Contract No. 51131007 and 51401222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Han, W., Wang, Z. et al. Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere. J. of Materi Eng and Perform 25, 5382–5390 (2016). https://doi.org/10.1007/s11665-016-2312-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2312-0

Keywords

Navigation