Skip to main content
Log in

Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a conventional tungsten carbide 12% cobalt (WC-12Co) coating was deposited by using a liquid fuel JP-8000 high velocity oxyfuel spray system. The properties of the coating namely phase content, microstructure, hardness, porosity, and fracture toughness were examined. The microstructure evolution and its influence on the abrasive wear behavior of the coatings were evaluated in detail by in-situ scanning electron microscopy and a comprehensive model for decarburization of WC has been established using x-ray diffraction and transmission electron microscopy analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Wang, Z.X. Tang, and L.M. Cha, Cavitation and sand slurry erosion resistances of WC-10Co-4Cr coatings, J. Mater. Eng. Perform., 2015, 24, p 2435–2443

    Article  Google Scholar 

  2. M.S. Han, S.J. Lee, M.S. Kim, S.K. Jang, and S.J. Kim, Electrochemical characteristics of HVOF spray coated layer with WC − 27NiCr and WC − 10Co4Cr for Al bronze, Trans. Nonferrous Met. Soc. China, 2012, 22, p s753–s759

    Article  Google Scholar 

  3. C.J. Li and G.J. Yang, Relationships between feedstock structure, particle parameter, coating deposition, microstructure and properties for thermally sprayed conventional and nanostructured WC-Co, Int. J. Refract. Met. Hard Mater., 2013, 39, p 2–17

    Article  Google Scholar 

  4. Z.X. Ding, W. Chen, and Q. Wang, Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF, Trans. Nonferrous Met. Soc. China, 2011, 21, p 129–135

    Google Scholar 

  5. M.E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, Plasma sprayed WC-Co coatings: influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness, J. Vac. Sci. Technol. A, 1985, 3, p 2483–2489

    Article  Google Scholar 

  6. H. Liao, B. Normand, and C. Coddet, Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings, Surf. Coat. Technol., 2000, 124, p 235–245

    Article  Google Scholar 

  7. B.H. Kear, G. Skandan, and R.K. Sadangi, Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings, Scripta Mater., 2001, 44, p 1703–1707

    Article  Google Scholar 

  8. R. Ahmed, O. Ali, N.H. Faisal, N.M. Al-Anazi, S. Al-Mutairi, F.-L. Toma, L.-M. Berger, A. Potthoff, and M.F.A. Goosen, Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatings, Wear, 2015, 322–323, p 133–150

    Article  Google Scholar 

  9. Q. Wang, J. Xiang, G.Y. Chen, Y.L. Cheng, X.Q. Zhao, and S.Q. Zhang, Propylene flow, microstructure and performance of WC-12Co coatings using a gas-fuel HVOF spray process[J], J. Mater. Process. Technol., 2013, 213, p 1653–1660

    Article  Google Scholar 

  10. M.A. Rodríguez, L. Gil, S. Camero, N. Fréty, Y. Santana, and J. Caro, Effects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings, Surf. Coat. Technol., 2014, 258, p 38–48

    Article  Google Scholar 

  11. L. Jacobs, M.M. Hyland, and M.D. Bonte, Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings, J. Therm. Spray Technol., 1999, 8, p 125–132

    Article  Google Scholar 

  12. C. Lyphout and K. Sato, Screening design of hard metal feedstock powders for supersonic air fuel processing, Surf. Coat. Technol., 2014, 258, p 447–457

    Article  Google Scholar 

  13. J.A. Picas, M. Punset, M.T. Baile, E. Martín, and A. Forn, Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC-CoCr coatings, Surf. Coat. Technol., 2011, 205, p s364–s368

    Article  Google Scholar 

  14. Q. Wang, Z.H. Chen, L.X. Li, and G.B. Yang, The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC-12Co coating, Surf. Coat. Technol., 2012, 206, p 2233–2241

    Article  Google Scholar 

  15. D.A. Stewart, P.H. Shipway, and D.G. Mccartney, Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders, Acta Mater., 2000, 48, p 1593–1604

    Article  Google Scholar 

  16. B. Cecilia, V. Teodoro, C. Fabio, B. Edoardo, and T. Mario, Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings, J. Therm. Spray Technol., 2005, 14, p 187–195

    Article  Google Scholar 

  17. B. Giovanni, C. Valeria, L. Luca, and R. Sara, Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings, Surf. Coat. Technol., 2006, 200, p 2995–3009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Xiong, H. & Wang, Q. Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating. J. of Materi Eng and Perform 25, 4352–4358 (2016). https://doi.org/10.1007/s11665-016-2278-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2278-y

Keywords

Navigation