Skip to main content

Advertisement

Log in

Effects of Simulated Microstructure on the Creep Rupture of the Modified 9Cr-1Mo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructures of the heat-affected zone (HAZ) of a Gr. 91 steel weld were simulated to evaluate their effects on the creep life of the weld at elevated temperatures. The Ac1 and Ac3 temperatures of the Gr. 91 steel were determined by a dilatometer to be at 867 and 907 °C, respectively. An infrared heating system was employed to heat the samples to 860 (STOT), 900 (ICHAZ) and 940 °C (FGHAZ) for 1 min, followed by cooling to room temperature. The simulated specimens were then subjected to conventional post-weld heat treatment (PWHT) at 750 °C/2 h. After the PWHT, the tempered ICHAZ specimen had a shortest creep life among the specimens tested at 650 °C/60 MPa. Moreover, the simulated specimen heated to 860 °C (STOT) was more likely to fracture at 615 °C/80 MPa than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Viswanathan, K. Coleman, and U. Rao, Materials for ultra-supercritical coal-fired power plant boilers, Int. J. Press. Vessels Pip., 2006, 83, p 778–783

    Article  Google Scholar 

  2. M.E. Abd El-Azim, O.H. Ibrahim, and O.E. El-Desoky, Long term creep behaviour of welded joints of P91 steel at 650 °C, Mater. Sci. Eng., A, 2013, 560, p 678–684

    Article  Google Scholar 

  3. M. Sireesha, S. Sundaresan, and S. Albert, Microstructure and mechanical properties of weld fusion zones in modified 9Cr-1Mo steel, J. Mater. Eng. Perform., 2001, 10, p 320–330

    Article  Google Scholar 

  4. M. Yoshino, Y. Mishima, Y. Toda, H. Kushima, K. Sawada, and K. Kimura, Influence of normalizing heat treatment on precipitation behaviour in modified 9Cr-1Mo steel, Mater. High Temp., 2008, 25, p 149–158

    Article  Google Scholar 

  5. T. Shrestha, S.F. Alsagabi, I. Charit, G.P. Potirniche, and M.V. Glazoff, Effect of heat treatment on microstructure and hardness of grade 91 steel, Metals, 2015, 5, p 131–149

    Article  Google Scholar 

  6. N.Z. Gutie’rrez, H. De Cicco, J. Marrero, C.A. Dano’n, and M.I. Luppo, Evolution of precipitated phases during prolonged tempering in a 9%Cr1%MoVNb ferritic-martensitic steel: influence on creep performance, Mater. Sci. Eng., A, 2011, 528, p 4019–4029

    Article  Google Scholar 

  7. T.C. Totemeier, H. Tian, and J.A. Simpson, Effect of normalizing temperature on the creep strength of modified 9Cr-1Mo steel, Metall. Mater. Trans. A, 2006, 37, p 1519–1525

    Article  Google Scholar 

  8. C. Pandey, A. Giri, and M.M. Mahapatra, Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel, Mater. Sci. Eng., A, 2016, 657, p 173–184

    Article  Google Scholar 

  9. C.R. Das, S.K. Albert, A.K. Bhaduri, G. Srinivasan, and B.S. Murty, Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr-1Mo steel weld joints, Mater. Sci. Eng., A, 2008, 477, p 185–192

    Article  Google Scholar 

  10. B. Arivazhagan, R. Prabhu, S.K. Albert, M. Kamaraj, and S. Sundaresan, Microstructure and mechanical properties of 9Cr-1Mo steel weld fusion zones as a function of weld metal composition, J. Mater. Eng. Perform., 2009, 18, p 999–1004

    Article  Google Scholar 

  11. H.C. Furtado, L.H. de Almeida, and I. Le May, Precipitation in 9Cr-1Mo steel after creep deformation, Mater. Charact., 2007, 58, p 72–77

    Article  Google Scholar 

  12. A. Mitra, N. Siva Prasad, and G.D. Janaki Ram, Influence of temperature and time of post-weld heat treatment on stress relief in an 800-mm-thick steel weldment, J. Mater. Eng. Perform., 2016, 25, p 1384–1393

    Article  Google Scholar 

  13. V.T. Paul, S. Saroja, P. Hariharan, A. Rajadurai, and M. Vijayalakshmi, Identification of microstructural zones and thermal cycles in a weldment of modified 9Cr-1Mo steel, J. Mater. Sci., 2007, 42, p 5700–5713

    Article  Google Scholar 

  14. A. Moitra, P. Parameswaran, P.R. Sreenivasan, and S.L. Mannan, A toughness study of the weld heat-affected zone of a 9Cr-1Mo steel, Mater. Charact., 2002, 48, p 55–61

    Article  Google Scholar 

  15. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi, Variation in the Type IV cracking behaviour of a high Cr steel weld with post weld heat treatment, Int. J. Press. Vessels Pip., 2003, 80, p 405–413

    Article  Google Scholar 

  16. H. Hongo, M. Tabuchi, and T. Watanabe, Type IV creep damage behavior in Gr.91 steel welded joints, Metall. Mater. Trans. A, 2012, 43, p 1163–1173

    Article  Google Scholar 

  17. M. Divya, C.R. Das, S.K. Albert, S. Goyal, P. Ganesh, R. Kaul, J. Swaminathan, B.S. Murty, L.M. Kukreja, and A.K. Bhaduri, Influence of welding process on Type IV cracking behavior of P91 steel, Mater. Sci. Eng., A, 2014, 613, p 148–158

    Article  Google Scholar 

  18. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi, Microstructural investigations on Type IV cracking in a high Cr steel, ISIJ Int., 2002, 42, p 1497–1504

    Article  Google Scholar 

  19. J. Parker and W. Weiss, Microstructure and creep behaviour of pressure boundary welds from grade 91 steel, Mater. High Temp., 2014, 31, p 171–179

    Article  Google Scholar 

  20. F. Abe and M. Tabuchi, Microstructure and creep strength of welds in advanced ferritic power plant steels, Sci. Technol. Weld. Join., 2004, 9, p 22–30

    Article  Google Scholar 

  21. B. Arivazhagan and M. Vasudevan, A study of microstructure and mechanical properties of grade 91 steel A-TIG weld joint, J. Mater. Eng. Perform., 2013, 22, p 3708–3716

    Article  Google Scholar 

  22. C.R. Das, S.K. Albert, J. Swaminathan, S. Raju, A.K. BhaduriI, and B.S. Murty, Transition of crack from Type IV to Type II, resulting from improved utilization of boron in the modified 9Cr-1Mo steel weldment, Metall. Mater. Trans. A, 2012, 43, p 3724–3741

    Article  Google Scholar 

  23. X. Yu, S.S. Babu, H. Terasaki, Y. Komizo, Y. Yamamoto, and M.L. Santella, Correlation of precipitate stability to increased creep resistance of Cr-Mo steel welds, Acta Mater., 2013, 61, p 2194–2206

    Article  Google Scholar 

  24. Y. Wang and L. Li, Microstructure evolution of fine-grained heat affected zone in Type IV failure of P91 welds, Weld. J., 2016, 95, p 27-s–36-s

    Google Scholar 

  25. M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, J. Kinugawa, and F. Abe, Degradation of creep strength in welded joint of 9%Cr steel, ISIJ Int., 2001, 41, p S126–S130

    Article  Google Scholar 

  26. X. Wang, Q.-G. Pan, Y.-Y. Ren, W. Shang, H.-Q. Zeng, and H. Liu, Microstructure and Type IV cracking behavior of HAZ in P92 steel weldment, Mater. Sci. Eng., A, 2012, 552, p 493–501

    Article  Google Scholar 

  27. Y. Liu, S. Tsukamoto, T. Shirane, and F. Abe, Formation mechanism of Type IV failure in high Cr ferritic heat-resistant steel-welded joint, Metall. Mater. Trans. A, 2013, 44, p 4626–4633

    Article  Google Scholar 

  28. K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, Microstructure characterization of heat affected zone after welding in Mod. 9Cr-1Mo steel, Mater. Charact., 2015, 101, p 106–113

    Article  Google Scholar 

  29. V. Gaffard, A.F. Gourgues-Lorenzon, and J. Besson, High temperature creep flow and damage properties of the weakest area of 9Cr1Mo-NbV martensitic steel weldments, ISIJ Int., 2005, 45, p 1915–1924

    Article  Google Scholar 

  30. C. Pandy and M.M. Mahapatra, Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld, J. Mater. Eng. Perform., 2016, 25, p 2761–2775

    Article  Google Scholar 

  31. K. Laha, K.S. Chandravathi, K.B.S. Rao, and S.L. Mannan, Hot tensile properties of simulated heat-affected zone microstructures of 9Cr-1Mo weldment, Int. J. Press. Vessels Pip., 1995, 62, p 303–311

    Article  Google Scholar 

  32. K. Sawada, H. Kushima, M. Tabuchi, and K. Kimura, Microstructural degradation of Gr. 91 steel during creep under low stress, Mater. Sci. Eng., A, 2011, 528, p 5511–5518

    Article  Google Scholar 

  33. E.M. Haney, F. Dalle, M. Sauzay, L. Vincent, I. Tournié, L. Allais, and B. Fournier, Macroscopic result of long-term creep on a modified 9Cr-1Mo steel (T91), Mater. Sci. Eng., A, 2009, 510–511, p 99–103

    Article  Google Scholar 

  34. K. Kimura, H. Kushima, and K. Sawada, Long-term creep deformation property of modified 9Cr-1Mo steel, Mater. Sci. Eng., A, 2009, 510-511, p 58–63

    Article  Google Scholar 

  35. G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, Quantification of the Laves phase in advanced 9-12%Cr steels using a standard SEM, Mater. Charact., 2003, 51, p 341–352

    Article  Google Scholar 

  36. A. Golpayegani, H.-O. Andre’n, H. Danielsen, and J. Hald, A study on Z-phase nucleation in martensitic chromium steels, Mater. Sci. Eng., A, 2008, 489, p 310–318

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the Institute of Nuclear Energy Research under Contract No. NL1020168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. W. Tsay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, T.H., Chen, T.C., Jeng, S.L. et al. Effects of Simulated Microstructure on the Creep Rupture of the Modified 9Cr-1Mo Steel. J. of Materi Eng and Perform 25, 4317–4325 (2016). https://doi.org/10.1007/s11665-016-2270-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2270-6

Keywords

Navigation