Skip to main content
Log in

Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015–1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Lehmert, J. Janczak-Rusch, G. Pigozzi, P. Zuraw, F. La Mattina, L. Wojarski, W. Tillmann, and L.P.H. Jeurgens, Copper-Based Nanostructured Coatings for Low-Temperature Brazing Applications, Mater. Trans., 2015, 56(7), p 1015–1018

    Article  Google Scholar 

  2. G. Kaptay, J. Janczak-Rusch, G. Pigozzi, and L.P.H. Jeurgens, Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations, J. Mater. Eng. Perform., 2014, 23, p 1600–1607

    Article  Google Scholar 

  3. Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Progr. Mater. Sci., 2007, 52, p 1175–1262

    Article  Google Scholar 

  4. G. Guenther and O. Guillon, Models of Size-Dependent Nanoparticle Melting Tested on Gold, J. Mater. Sci., 2014, 49, p 7915–7932

    Article  Google Scholar 

  5. P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z Phys. Chemie, 1908, 55, p 545–548

    Google Scholar 

  6. M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Japan, 1954, 9(3), p 359–363

    Article  Google Scholar 

  7. J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, Interfacial Design for Joining Technologies—An Historical Perspective, J. Mater. Eng. Perform., 2014, 23, p 1608–1613

    Article  Google Scholar 

  8. Z. Wang, L.P.H. Jeurgens, and W. Sigle, Eric J. Mittemeijer, Observation and Origin of Extraordinary Atomic Mobility at Metal-Semiconductor Interfaces at Low Temperatures, Phys. Rev. Lett., 2015, 115, p 016102

    Article  Google Scholar 

  9. R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5

    Google Scholar 

  10. T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149

    Article  Google Scholar 

  11. C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 868–874

    Google Scholar 

  12. J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In-Situ Electron Microscopy, J. Vacuum Sci. Techn., 1969, 6(4), p 472–475

    Article  Google Scholar 

  13. C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449

    Article  Google Scholar 

  14. J. Janczak-Rusch, G. Pigozzi, B. Lehmert, M. Parlinska, V. Bissig, W. Tillmann, L. Wojarski, F. Hoffmann, Proceedings of the of IBSC 2012—5th International Brazing and Soldering Conference, 2012, p 163

  15. J. Janczak-Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L.P.H. Jeurgens, Structural Evolution of Ag–Cu Nano-Alloys Confined Between AlN Nano-Layers upon Fast Heating, Phys. Chem. Chem. Phys., 2015, 17, p 28228

    Article  Google Scholar 

  16. G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-Sized Ag-Cu/AlN Multilayers: Experimental and ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602

    Article  Google Scholar 

  17. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56

    Article  Google Scholar 

  18. J. Janczak-Rusch, M. Chiodi, F. Moszner, C. Cancellieri, R. Hauert, L.P.H. Jeurgens, Development of nanostructured silver-based brazing fillers in a multilayer configuration for low-temperature joining, 68th Annual Assembly and International Conference, IIW 2015, SC-MICRO, Microjoining and Nanojoining Workshop, 28 June–3 July 2015, Helsinki, Finland, 2015

  19. M. Chiodi, C. Cancellieri, F. Moszner, M. Andrzejczuk, J. Janczak-Rusch, L.P.H. Jeurgens, Massive Ag Migration Through Metal/Ceramic Nano-Multilayers: Interplay Between Temperature, Stress-Relaxation and Oxygen-Enhanced Mass Transport, J. Mater. Chem. C, 2016. doi:10.1039/C6TC01098A

    Google Scholar 

  20. J. Lipecka, J. Janczak-Rusch, M. Lewandowska, M. Andrzejczuk, G. Richter, L.P.H. Jeurgens, Phase Stability and Melting Point Depression of Nano-Confined Al-Si10at.% Alloys in AlSi/AlN Nano-Multilayered Brazing Fillers, 2016 (in preparation)

  21. A.N. Belov, S.V. Bulyarsky, D.G. Gromov, L.M. Pavlova, and O.V. Pyatilova, Study of Silver Cluster Formation From Thin Films on Inert Surface, Calphad, 2014, 44, p 138–141

    Article  Google Scholar 

  22. I. Barin, Thermomechanical Properties of Pure Substances, VCh, 1993, in 2 parts

  23. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317–425

    Article  Google Scholar 

  24. Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296

    Article  Google Scholar 

  25. J.-G. Lee, J. Lee, T. Tanaka, and H. Mori, In Situ Atomic-Scale Observation of Melting Point Suppression in Nanometer-Sized Gold Particles, Nanotechnology, 2009, 20, p 475706

    Article  Google Scholar 

  26. P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483

    Article  Google Scholar 

  27. F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scr. Metall., 1979, 13, p 149–151

    Article  Google Scholar 

  28. G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701

    Article  Google Scholar 

  29. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246

    Article  Google Scholar 

  30. K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Progr. Mater. Sci., 1997, 42, p 287–300

    Article  Google Scholar 

  31. M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342

    Article  Google Scholar 

  32. Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656

    Article  Google Scholar 

  33. Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795

    Article  Google Scholar 

  34. T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472

    Google Scholar 

  35. M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441

    Article  Google Scholar 

  36. U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627

    Article  Google Scholar 

  37. Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255

    Article  Google Scholar 

  38. Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316

    Article  Google Scholar 

  39. V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Central Eur. J. Phys., 2004, 2(1), p 90–103

    Google Scholar 

  40. Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 Without Epitaxial Interface, Phys. Rev. B, 2004, 70, p 125421

    Article  Google Scholar 

  41. J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627

    Article  Google Scholar 

  42. J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103

    Article  Google Scholar 

  43. J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702

    Article  Google Scholar 

  44. G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-Polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011

    Article  Google Scholar 

  45. J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40

    Article  Google Scholar 

  46. G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546

    Article  Google Scholar 

  47. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys Rev B, 2007, 75(8), p 085434

    Article  Google Scholar 

  48. P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428

    Article  Google Scholar 

  49. J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111

    Article  Google Scholar 

  50. K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628

    Article  Google Scholar 

  51. V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C., 2009, 113(32), p 14088–14096

    Article  Google Scholar 

  52. G. Kaptay, The Extension of the Phase Rule to Nano-Systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170

    Article  Google Scholar 

  53. W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863

    Article  Google Scholar 

  54. V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nature Comm., 2011, 2, p 284

    Article  Google Scholar 

  55. V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface With Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103

    Article  Google Scholar 

  56. G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633

    Article  Google Scholar 

  57. A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Coll. J., 2012, 74(2), p 136–153

    Article  Google Scholar 

  58. G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems With Nano-Phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335

    Article  Google Scholar 

  59. V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104

    Article  Google Scholar 

  60. J. Leitner and M. Kamrádek, Termodynamicky Popis Nanosystemu, Chem. Listy, 2013, 107, p 606–613

    Google Scholar 

  61. A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411

    Article  Google Scholar 

  62. J. Lee and K.J. Sim, General Equations of Calphad-Type Thermodynamic Description for Metallic Nanoparticle Systems, Calphad, 2014, 44, p 129–132

    Article  Google Scholar 

  63. A. Junkaew, B. Ham, X. Zhang, and R. Arróyave, Tailoring the Formation of Metastable Mg Through Interfacial Engineering: A Phase Stability Analysis, Calphad, 2014, 45, p 45–150

    Article  Google Scholar 

  64. I. Atanasov, R. Ferrando, and R.L. Johnston, Structure and Solid Solution Properties of Cu–Ag Nanoalloys, J. Phys.: Condens. Matter, 2014, 26, p 275301–275309

    Google Scholar 

  65. J. Sopousek, O. Zobac, J. Bursık, P. Roupcova, V. Vykoukal, P. Broz, J. Pinkas, and J. Vrestal, Heat-Induced Spinodal Decomposition of Ag–Cu Nanoparticles, Phys. Chem. Chem. Phys., 2015, doi:10.1039/c5cp00198f

    Google Scholar 

  66. S. Bajaj, M.G. Haverty, R. Arróyave, W.A. Goddard, III, and S. Shankar, Phase Stability in Nanoscale Material Systems: Extension From Bulk Phase Diagrams, Nanoscale, 2015, doi:10.1039/c5nr01535a

    Google Scholar 

  67. L. Wojtczak, The Melting point of Thin Films, Phys. Stat. Sol., 1967, 22, p K163–K166

    Article  Google Scholar 

  68. C.L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles, Appl. Phys. Lett., 2010, 96, p 253104

    Article  Google Scholar 

  69. L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307

    Article  Google Scholar 

  70. D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144

    Article  Google Scholar 

  71. H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu, Epitaxial Dependence of the Melting Behavior of In Nanoparticles Embedded in Al matrices, J Mater Res, 1997, 12(1), p 119–123

    Article  Google Scholar 

  72. H.W. Sheng, K. Lu, and E. Ma, Acta Mater., 1998, 46, p 5195

    Article  Google Scholar 

  73. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E.J. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminium-Oxide Films on Aluminium Substrates, Physical Review B, 2000, 62, p 4707–4719

    Article  Google Scholar 

  74. J. Emsley, The Elements, Clarendon Press, Oxford, 1989

    Google Scholar 

  75. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977

    Book  Google Scholar 

  76. G. Kaptay, Approximated Equations for Molar Volumes of Pure Solid Fcc Metals and Their Liquids From Zero Kelvin to Above Their Melting Points at Standard Pressure, J. Mater. Sci., 2015, 50, p 678–687

    Article  Google Scholar 

  77. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993

    Google Scholar 

  78. G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of Bcc, Fcc and Hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26

    Article  Google Scholar 

  79. N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999

    Google Scholar 

  80. G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156

    Article  Google Scholar 

  81. G. Kaptay, Modeling Interfacial Energies in Metallic Systems, Mater. Sci. Forum, 2005, 473–474, p 1–10

    Article  Google Scholar 

  82. K. Maier, Self-diffusion in Copper at “Low” Temperatures, Phys. Status solidi (a), 1977, 44, p 567

    Article  Google Scholar 

  83. E. Budke, T. Surholt, S.I. Prokofjev, and L.S. Shvindlerman, Chr. Herzig, Tracer Diffusion of Au and Cu in a Series of Near & #xF053; = 5 (310)(Ref 001) Symmetrical Cu Tilt Grain, Acta Mater., 1999, 47, p 385

    Article  Google Scholar 

  84. D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, TMS, Warrendale, 1994, p 658

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge Benjamin Lehmert (Dortmund University of Technology, Germany) for sputter deposition of the Cu/AlN NMLs in Fig. 1, as well as Fabio La Mattina and Ivan Shorubalko (Empa) for performing the cross-sectional He-FIB analysis in Fig. 1. The financial support of EU FP7-PEOPLE-2013-IRSES Project EXMONANExperimental investigation and modelling of nanoscale solid state reactions with high technological impact is greatly acknowledged. GK thanks the TÁMOP-4.2.1.B-10/2/KONV-2010-0001 and the TÁMOP-4.2.2.A-11/1/KONV-2012-0019 project in the framework of the New Széchenyi Plan, supported by the European Union, and co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Janczak-Rusch.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposium “Interface Design and Modeling,” belonging to the Topic “Joining and Interfaces” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2015), held September 20-24, 2015, in Warsaw, Poland, and has been expanded from the original presentation.

Appendix 1: Physico-Chemical Properties for the Cu/AlN NML System

Appendix 1: Physico-Chemical Properties for the Cu/AlN NML System

The standard melting point and molar melting entropy of Cu are \(T_{m}^{\text{o}}\) = 1357.77 K (Ref 23) and \(\Delta_{m} S_{\text{mol}}^{\text{o}}\) = 9.51 J/mol K (Ref 23), respectively. The standard Gibbs energy change accompanying melting of pure Cu below its standard melting point (J/mol) is obtained from (Ref 23):

$$G_{{{m},{l}}}^{\text{o}} - G_{{{m},{s}}}^{\text{o}} = 12964.736 - 9.511904 \cdot T - 5.849 \times 10^{ - 21} \cdot T^{7} .$$
(8)

The T-dependence of the molar volume of solid Cu (cm3/mol) is obtained from (Ref 74-76):

$$V_{{{m},{s}}}^{\text{o}} = 7.042 + 3.159 \times 10^{ - 5} \cdot T^{1.355} .$$
(9)

The standard surface tension \(\sigma_{l/g}^{\text{o}}\) (J/m2) and surface energy \(\sigma_{s/g}^{\text{o}}\) (J/m2) of Cu equal (Ref 77, 78):

$$\sigma_{l/g}^{\text{o}} = 1.30 - 2.3 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right),$$
(10)
$$\sigma_{s/g}^{\text{o}} = 1.60 - 4.7 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right).$$
(11)

The liquid/barrier interfacial energy is written from the Young-Dupré equation as (Ref 79):

$$\sigma_{l/b}^{\text{o}} = \sigma_{l/g}^{\text{o}} + \sigma_{b/g}^{\text{o}} - W_{l/b}^{\text{o}} ,$$
(12)

where \(\sigma_{b/g}^{\text{o}}\) (J/m2) is the surface energy of the barrier (AlN in our case), \(W_{l/b}^{\text{o}}\) (J/m2) is the adhesion energy between the liquid metal and the barrier, which can be expressed as

$$W_{l/b}^{\text{o}} = \sigma_{l/g}^{\text{o}} \cdot \left( 1 + { \cos \varTheta } \right).$$
(13)

At the Cu melting point, \(\sigma_{l/b}^{\text{o}}\) = 1.30 J/m2 (see Eq 10). The surface energy of AlN is about (Ref 80) (J/m2):

$$\sigma_{b/g}^{\text{o}} = 2.53 - 3.5 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right)$$
(14)

The contact angle of liquid Cu on AlN, being a covalent and non-reactive ceramic, is about 150° (Ref 79). Thus, as follows from Eq 13, the adhesion energy at the melting point of Cu is about \(W_{l/b}^{\text{o}}\) = 0.17 J/m2, which to a first approximation is taken T-independent. Thus, the T-dependence of \(\sigma_{l/b}^{\text{o}}\) (J/m2) is obtained by combining Eq 10, 12, 14:

$$\sigma_{l/b}^{\text{o}} = 3.66 - 5.8 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right).$$
(15)

The interface between solid Cu and AlN is incoherent (Ref 15, 16). Neglecting lattice mismatch strain (Ref 69), the adhesion energy is similar to that of the liquid Cu, i.e., \(W_{s/b}^{\text{o}}\) = 0.17 J/m2. Then, the solid metal/barrier interfacial energy approximately equals (see Eq 11, 12, 14):

$$\sigma_{s/b}^{\text{o}} = 3.96 - 8.2 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right).$$
(16)

To a first approximation, the grain boundary energy of the barrier layer can be taken as 1/3 of its surface energy, \(\sigma_{b/g}^{\text{o}}\) in Eq 14 (Ref 81), i.e.,

$$\sigma_{b/b}^{\text{o}} = 0.84 - 1.2 \times 10^{ - 4} \left( {T - T_{m}^{\text{o}} } \right).$$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaptay, G., Janczak-Rusch, J. & Jeurgens, L.P.H. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers. J. of Materi Eng and Perform 25, 3275–3284 (2016). https://doi.org/10.1007/s11665-016-2123-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2123-3

Keywords

Navigation