Skip to main content

Advertisement

Log in

Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29

    Article  Google Scholar 

  2. K.S. Kumar, H.S. Van, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51, p 5743–5774

    Article  Google Scholar 

  3. H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315

    Article  Google Scholar 

  4. H. Li and F. Ebrahimi, Tensile Behavior of a Nanocrystalline Ni-Fe Alloy, Acta Mater., 2006, 54, p 2877–2886

    Article  Google Scholar 

  5. G.J. Fan, L.F. Fu, G.Y. Wang, H. Choo, P.K. Liaw, and N.D. Browning, Mechanical Behavior of a Bulk Nanocrystalline Ni-Fe Alloy, J. Alloys Compd., 2007, 434, p 298–300

    Article  Google Scholar 

  6. H.A. Padilla, II, B.L. Boyce, C.C. Battaile, and S.V. Prasad, Frictional Performance and Near-Surface Evolution of Nanocrystalline Ni-Fe as Governed by Contact Stress and Sliding Velocity, Wear, 2013, 297, p 860–871

    Article  Google Scholar 

  7. S.K. Ghosh, G.K. Dey, R.O. Dusane, and A.K. Grover, Improved Pitting Corrosion Behaviour of Electrodeposited Nanocrystalline Ni-Cu Alloys in 3.0 wt.% NaCl Solution, J. Alloys Compd., 2006, 426, p 235–243

    Article  Google Scholar 

  8. T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27, p 1147–1158

    Article  Google Scholar 

  9. I. Baskaran, T.S. Sankara, and A. Stephen, Pulsed Electrodeposition of Nanocrystalline Cu-Ni Alloy Films and Evaluation of Their Characteristic Properties, Mater. Lett., 2006, 60, p 1990–1995

    Article  Google Scholar 

  10. S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Nanocrystalline Ni-Cu Alloy Plating by Pulse Electrolysis, Surf. Coat. Technol., 2000, 126, p 48–63

    Article  Google Scholar 

  11. E. Pellicer, A. Varea, S. Pané, K.M. Sivaraman, B.J. Nelson, N.S. Suri, M.D. Bar, and J.A. Sort, Comparison Between Fine-Grained and Nanocrystalline Electrodeposited Cu-Ni Films. Insights on Mechanical and Corrosion Performance, Surf. Coat. Technol., 2011, 205, p 5285–5293

    Article  Google Scholar 

  12. E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Men, M. Estrader, S. Surinach, M.D. Bar, J. Nogu, and J. Sort, Nanocrystalline Electroplated Cu-Ni: Metallic Thin Films with Enhanced Mechanical Properties and Tunable Magnetic Behavior, Adv. Funct. Mater., 2010, 20, p 983–991

    Article  Google Scholar 

  13. X. Shen, J. Lian, Z. Jiang, J. Zhonghao, and J. Qing, High Strength and High Ductility of Electrodeposited Nanocrystalline Ni with a Broad Grain Size Distribution, Mater. Sci. Eng. A, 2008, 487, p 410–416

    Article  Google Scholar 

  14. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533

    Article  Google Scholar 

  15. L. Qin, J. Lian, and Q. Jiang, Enhanced Ductility of High-Strength Electrodeposited Nanocrystalline Ni-Co Alloy with Fine Grain Size, J. Alloys Compd., 2010, 504, p S439–S442

    Article  Google Scholar 

  16. K.S. Willson and J.A. Rogers, Orientation, Crystal Structure and Appearance of Nickel Deposits from a Watts Bath Containing Coumarin, J. Tech. Proc. Am. Electroplat. Soc., 1964, 51, p 92–95

    Google Scholar 

  17. W. Xu, P. Dai, and X. Wu, Effect of Stress-Induced Grain Growth During Room Temperature Tensile Deformation on Ductility in Nanocrystalline Metals, Bull. Mater. Sci., 2010, 33, p 561–568

    Article  Google Scholar 

  18. A.J. Detor and C.A. Schuh, Tailoring and Patterning the Grain Size of Nanocrystalline Alloys, Acta Mater., 2007, 55, p 371–379

    Article  Google Scholar 

  19. H. Li and F. Ebrahimi, Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel-Iron Alloys, Mater. Sci. Eng. A, 2003, 347, p 93–101

    Article  Google Scholar 

  20. H. Li, F. Ebrahimi, H. Choo, and P.K. Liaw, Grain Size Dependence of Tensile Behavior in Nanocrystalline Ni-Fe Alloys, J. Mater. Sci., 2006, 41, p 7636–7642

    Article  Google Scholar 

  21. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2003, 51, p 387–405

    Article  Google Scholar 

  22. M. Prasad and A.H. Chokshi, Deformation-Induced Thermally Activated Grain Growth in Nanocrystalline Nickel, Scripta Mater., 2012, 67, p 133–136

    Article  Google Scholar 

  23. J. Mu, X. Li, L. Zhao, Z. Jiang, J. Lian, and Q. Jiang, Stable Ductility of an Electrodeposited Nanocrystalline Ni-20wt. % Fe Alloy in Tensile Plastic Deformation, J. Alloys Compd., 2013, 553, p 99–105

    Article  Google Scholar 

  24. F.T. Dalla, H.S. Van, and M. Victoria, Nanocrystalline Electrodeposited Ni: Microstructure and Tensile Properties, Acta Mater., 2002, 50, p 3957–3970

    Article  Google Scholar 

  25. Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, and Y.T. Zhu, Mechanism of Grain Growth During Severe Plastic Deformation of a Nanocrystalline Ni-Fe Alloy, Appl. Phys. Lett., 2009, 94, p p011908

    Google Scholar 

  26. S. Ni, Y.B. Wang, X.Z. Liao, S.N. Alhajeri, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Grain Growth and Dislocation Density Evolution in a Nanocrystalline Ni-Fe Alloy Induced by High-Pressure Torsion, Scripta Mater., 2011, 64, p 327–330

    Article  Google Scholar 

  27. D.K. Chaudhuri, D. Xie, and A.N. Lakshmanan, The Influence of Stacking Fault Energy on the Wear Resistance of Nickel Base Alloys, Wear, 1997, 209, p 140–152

    Article  Google Scholar 

  28. K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764

    Article  Google Scholar 

  29. K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero, and Z. Horita, Influence of Dislocation-Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77

    Article  Google Scholar 

  30. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of Stacking Fault Energy on Deformation Mechanism and Dislocation Storage Capacity in Ultrafine-Grained Materials, Scripta Mater., 2009, 60, p 52–55

    Article  Google Scholar 

  31. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493, p 123–129

    Article  Google Scholar 

  32. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation, Nat. Mater., 2003, 3, p 43–47

    Article  Google Scholar 

  33. X.Y. Zhang, X.L. Wu, and A.W. Zhu, Growth of Deformation Twins in Room-Temperature Rolled Nanocrystalline Nickel, Appl. Phys. Lett., 2009, 94, p p121907

    Article  Google Scholar 

  34. H.S. Van, P.M. Derlet, and A.G. Frøseth, Stacking Fault Energies and Slip in Nanocrystalline Metals, Nat. Mater., 2004, 3, p 399–403

    Article  Google Scholar 

  35. S. Yip, Nanocrystalline Metals: Mapping Plasticity, Nat. Mater., 2004, 3, p 11–12

    Article  Google Scholar 

  36. R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Mechanical Properties of Nanostructured FCC Materials Processed by the ARB Process, Mater. Sci. Eng. A, 2014, 606, p 443–450

    Article  Google Scholar 

  37. P.L. Sun, Y.H. Zhao, J.C. Cooley, M.E. Kassner, Z. Horita, T.G. Langdon, E.J. Lavernia, and Y.T. Zhu, Effect of Stacking Fault Energy on Strength and Ductility of Nanostructured Alloys: An Evaluation with Minimum Solution Hardening, Mater. Sci. Eng. A, 2009, 525, p 83–86

    Article  Google Scholar 

  38. Y.T. Zhu and X. Liao, Nanostructured Metals: Retaining Ductility, Nat. Mater., 2004, 3, p 351–352

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Scientific Fund of the Education Department of Fujan Province (Grant No. JA11179) and the Fujian University of Technology (Grant No. E0600133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Q. Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, P.Q., Zhang, C., Wen, J.C. et al. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys. J. of Materi Eng and Perform 25, 594–600 (2016). https://doi.org/10.1007/s11665-016-1881-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1881-2

Keywords

Navigation