Skip to main content
Log in

Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Eliyan, J.R. Kish, and A. Alfantazi, Voltammetric Analysis on the Formation of Fe(OH)2 and FeCO3, and on the Reactivity of Passivation of Steel in Carbonate Solutions, J. Mater. Eng. Perform., 2015, 24(6), p 1–8. doi:10.1007/s11665-015-1525-y

    Article  Google Scholar 

  2. J. Beavers, N. Thompson, External Corrosion of Oil and Natural Gas Pipelines, ASM International. ASM Handbook, Corrosion: Environments and Industries (#05145), 13C, 2006.

  3. J. Sutcliffe, R. Fessler, W. Boyd, and R. Parkins, Stress Corrosion Cracking of Carbon Steel in Carbonate Solutions, Corrosion, 1972, 28, p 313

    Article  Google Scholar 

  4. J. Might and D. Duquette, Stress Corrosion Cracking of High-Purity Carbon Steel in Carbonate Solutions, Corrosion, 1996, 52, p 428

    Article  Google Scholar 

  5. J. Beavers, K. Garrity, 100 mV Polarization Criterion and External SCC of Underground Pipelines, CORROSION/2001. Paper no. 592, NACE, 2001.

  6. B. Sherar, P. Keech, Z. Qin, F. King, and D. Shoesmith, Nominally Aerobic Corrosion of Carbon Steel in Near-Neutral pH Saline Environments, Corrosion, 2010, 66, p 45001-1

    Article  Google Scholar 

  7. M. Danielson, R. Jones, P. Dusek, Effect of Microstructure and Microchemistry on the SCC Behavior of Archival and Modern Pipeline Steels in a High pH Environment, CORROSION/2001. Paper no. 211, NACE, 2001.

  8. F. Eliyan, F. Icre, and A. Alfantazi, Passivation of HAZs of API-X100 Pipeline Steel in Bicarbonate-Carbonate Solutions at 298 K, Mater. Corros., 2013, doi:10.1002/maco.201206985

    Google Scholar 

  9. J. Bulger, The Effect of Microstructure on Near-Neutral-pH SCC, Master of Science Thesis, University of Alberta, 2000.

  10. F. Eliyan and A. Alfantazi, Mechanisms of Corrosion and Electrochemical Significance of Metallurgy and Environment with Corrosion of Iron and Steel in Bicarbonate and Carbonate Solutions—A Review, Corrosion, 2014, 70, p 880–898

    Article  Google Scholar 

  11. M. Danielson, R. Jones, K. Krist, Effect of Microstructure and Microchemistry on the SCC Behavior of Pipeline Steels in a High pH Environment, CORROSION/2000. Paper no. 359, NACE, 2000.

  12. S. Adamy and F. Cala, Inhibition of Pitting in Ferrous Materials by Carbonate as a Function of Temperature and Alkalinity, Corrosion, 1999, 55, p 825

    Article  Google Scholar 

  13. S. Refaey, F. Taha, and A. Abd El-Malak, Corrosion and Inhibition of Stainless Steel Pitting Corrosion in Alkaline Medium and the Effect of Cl and Br Anions, Appl. Surf. Sci., 2005, 242, p 114

    Article  Google Scholar 

  14. C. Lee, Z. Qin, M. Odziemkowski, and D. Shoesmith, The Influence of Groundwater Anions on the Impedance Behaviour of Carbon Steel Corroding Under Anoxic Conditions, Electrochim. Acta, 2006, 51, p 1558

    Article  Google Scholar 

  15. S. Drissi, Ph Refait, M. Abdelmoula, and J. Génin, The Preparation and Thermodynamic Properties of Fe(II)-Fe(III) Hydroxide-Carbonate (Green Rust 1); Pourbaix Diagram of Iron in Carbonate-Containing Aqueous Media, Corros. Sci., 1995, 37, p 2025

    Article  Google Scholar 

  16. M. Pourbaix, N. De Zoubov, M. Pourbaix (Ed.), Atlas of Electrochemical Equilibira, Pergamon Press, Oxford, UK, 1966, Chapter IV.

  17. S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chausse, R. Messina, and P. Toulhoat, Experimental Investigations on Iron Corrosion Products Formed in Bicarbonate/Carbonate-Containing Solutions at 90°C, Corros. Sci., 2001, 43, p 2049

    Article  Google Scholar 

  18. P. Refait and J. Genin, The Oxidation of Ferrous Hydroxide in Chloride-Containing Aqueous Media and Pourbaix Diagrams of Green Rust One, Corros. Sci., 1993, 34, p 797

    Article  Google Scholar 

  19. A. Riley, J. Sykes, and A. Hamnett, The Cathodic Reduction of Passive Films on Low-Alloy Steel in Carbonate Solutions, Corros. Sci., 1988, 28, p 799

    Article  Google Scholar 

  20. F. Eliyan and A. Alfantazi, Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Pipeline Steel in Dilute Bicarbonate Solutions at 90°C—An Electrochemical Evaluation, Corros. Sci., 2013, 74, p 297–307

    Article  Google Scholar 

  21. F. Eliyan and A. Alfantazi, Sensitivity of Passive Films on API-X100 Heat-Affected Zones (HAZs) Towards Trace Chloride Concentrations in Bicarbonate Solutions at High Temperature, Mater. Corros., 2013, doi:10.1002/maco.201206984

    Google Scholar 

  22. F. Eliyan and A. Alfantazi, Re-examining the Influence of Chloride Ions on Electrochemical CO2 Corrosion of Pipeline Steels—Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Steel, Can. J. Chem. Eng., 2015, doi:10.1002/cjce.22189

    Google Scholar 

  23. J. Bockris, D. Drazic, and A. Despic, The Electrode Kinetics of the Deposition and Dissolution of Iron, Electrochim. Acta, 1961, 4, p 325–361

    Article  Google Scholar 

  24. L. Moiseeva, Carbon Dioxide Corrosion of Oil and Gas Field Equipment, Prot. Met., 2005, 41, p 76–83

    Article  Google Scholar 

  25. C. de Waard and D. Milliams, Carbonic acid Corrosion of Steel, Corrosion, 1975, 31, p 177

    Article  Google Scholar 

  26. G. Ogundele and W. White, Observations on the Influences of Dissolved Hydrocarbon Gases and Variable Water Chemistries on Corrosion of an API-L80 Steel, Corrosion, 1987, 43, p 665

    Article  Google Scholar 

  27. M. Puiggali, S. Rousserie, and M. Touzet, Fatigue Crack Initiation on Low-Carbon Steel Pipes in a Near-Neutral-ph Environment Under Potential Control Conditions, Corrosion, 2002, 58, p 961

    Article  Google Scholar 

  28. W. Chen, F. King, T. Jack, and M. Wilmott, Environmental Aspects of Near-Neutral pH Stress Corrosion Cracking of Pipeline Steel, Metall. Mater. Trans. A, 2002, 33A, p 1429

    Article  Google Scholar 

  29. J. Bessone, L. Karakaya, P. Lorbeer, and W. Lorenz, The Kinetics of Iron Dissolution and Passivation, Electochim. Acta, 1977, 22, p 1147

    Article  Google Scholar 

  30. P. Doig and P. Flewitt, Electrochemical Dissolution Behaviour of Iron in Dilute Sodium Hydroxide Solution, Corros. Sci., 1977, 17, p 369

    Article  Google Scholar 

  31. E. Castro, J. Vilche, and A. Arvia, Iron Dissolution and Passivation in K2CO3-KHCO3 Solutions. Rotating Ring Disc Electrode and XPS Studies, Corros. Sci., 1991, 32, p 37

    Article  Google Scholar 

  32. A. Ninh Pham, A.L. Rose, A.J. Feitz, and T.D. Waite, Kinetics of Fe(III) Precipitation in Aqueous Solutions at pH 6.0–9.5 and 25°C, Geochim. Cosmochim. Acta, 2006, 70, p 640

    Article  Google Scholar 

  33. E. Castro, C. Valentini, C. Moina, J. Vilche, and A. Arvia, The Influence of Ionic Composition on the Electrodissolution and Passivation of Iron Electrodes in Potassium Carbonate-Bicarbonate Solutions in the 8.4-10.5 pH Range at 25°C, Corros. Sci., 1986, 26, p 781

    Article  Google Scholar 

  34. C. Rangel and R. Leitao, Voltammetric Studies of the Transpassive Dissolution of Mild Steel in Carbonate/Bicarbonate Solutions, Electochim. Acta, 1989, 34, p 255

    Article  Google Scholar 

  35. C. Valentini and C. Moina, The Electrochemical Behaviour of Iron in Stagnant and Stirred Potassium Carbonate-Bicarbonate Solutions in the 0–75°C Temperature Range, Corros. Sci., 1985, 25, p 985

    Article  Google Scholar 

  36. Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides, Corros. Sci., 2006, 48, p 3049

    Article  Google Scholar 

  37. A. Muñoz, J. Genesca, R. Duran, J. Mendoza, Mechanism of FeCO3 Formation on API X70 Pipeline Steel in Brine Solutions Containing CO2, CORROSION/2005. Paper no. 297, NACE, 2005.

  38. E. Castro and J. Vilche, Electrooxidation/Electroreduction Processes at Composite Iron Hydroxide Layers in Carbonate-Bicarbonate Buffers, J. Appl. Electrochem., 1991, 21, p 543

    Article  Google Scholar 

  39. S. Simard, M. Drogowska, and H. Menard, Electrochemical Behavior of 1024 Mild Steel in Slightly Alkaline Bicarbonate Solutions, J. Appl. Electrochem., 1997, 27, p 317

    Article  Google Scholar 

  40. J. Zhou, X. Li, C. Du, Y. Pan, T. Li, and Q. Liu, Passivation Process of X80 Pipeline Steel in Bicarbonate Solutions, Int. J. Min. Met. Mater., 2011, 18, p 178

    Article  Google Scholar 

  41. G. Burstein and D. Davies, The Effects of Anions on the Behaviour of Scratched Iron Electrodes in Aqueous Solutions, Corros. Sci., 1980, 20, p 1143

    Article  Google Scholar 

  42. J. Flis and T. Zakroczymski, Enhanced hydrogen Entry in Iron at Low Anodic and Low Cathodic Polarizations in Neutral and Alkaline Solutions, Corrosion, 1992, 48, p 530

    Article  Google Scholar 

  43. C. Palacios and J. Shadley, Characteristics of Corrosion Scales on Steels in a CO2-Saturated NaCl Brine, Corrosion, 1991, 47, p 122

    Article  Google Scholar 

  44. J. Thomas, T. Nurse, and R. Walker, Anodic Passivation of Iron in Carbonate Solutions, Brit. Corros. J., 1970, 5, p 87

    Article  Google Scholar 

  45. J. Thomas and T. Nurse, The Anodic Passivation of Iron in Solutions of Inhibitive Anions, Brit. Corros. J., 1967, 2, p 13

    Article  Google Scholar 

  46. A. Atkinson and R. Taylor, Diffusion of 55Fe in Fe2O3 Single Crystals, J. Phys. Chem. Solids, 1985, 46, p 469

    Article  Google Scholar 

  47. R. Chang and J. Wagner, Jr., Direct-Current Conductivity and Iron Tracer Diffusion in Hematite at High Temperature, J. Am. Ceram. Soc., 1972, 55, p 211

    Article  Google Scholar 

  48. G. Zhang and Y. Cheng, Micro-Electrochemical Characterization of Corrosion of Pre-cracked X70 Pipeline Steel in a Concentrated Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52, p 960

    Article  Google Scholar 

  49. F. Eliyan, E. Mahdi, and A. Alfantazi, Electrochemical Evaluation of the Corrosion Behaviour of API-X100 Pipeline Steel in Aerated Bicarbonate Solutions, Corros. Sci., 2012, 58, p 181

    Article  Google Scholar 

  50. M. Nagayama and M. Cohen, The Anodic Oxidation of Iron in a Neutral Solution II. Effect of Ferrous Ion and pH on the Behavior of Passive Iron, J. Electrochem. Soc., 1963, 110, p 670

    Article  Google Scholar 

  51. R. Parkins and S. Zhou, The Stress Corrosion Cracking of C-Mn Steel inCO2-HCO 3 CO3 2− Solutions. II: Electrochemical and Other Data, Corros. Sci., 2001, 39, p 175

    Article  Google Scholar 

  52. G. Zhang and Y. Cheng, Micro-Electrochemical Characterization and Mott-Schottky Analysis of Corrosion of Welded X70 Pipeline Steel in Carbonate/Bicarbonate Solution, Electrochim. Acta, 2009, 55, p 316

    Article  Google Scholar 

  53. F. Beck, R. Kaus, and M. Oberst, Transpassive Dissolution of Iron to Ferrate (VI) in Concentrated Alkali Hydroxide Solutions, Electochim. Acta, 1985, 30, p 173

    Article  Google Scholar 

  54. M. El-Naggar, Cyclic Voltammetric Studies of Carbon Steel in Deaerated NaHCO3 Solution, J. Appl. Electrochem., 2004, 34, p 911

    Article  Google Scholar 

  55. J. von Fraunhofer, The Polarization Behaviour of Mild Steel in Aerated and De-aerated 1 M NaHCO3, Corros. Sci., 1970, 10, p 245

    Article  Google Scholar 

Download references

Acknowledgment

This publication was made possible by NPRP Grant # 09-211-2-089 from the Qatar National Research Fund (a member of Qatar Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faysal Fayez Eliyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliyan, F.F., Alfantazi, A. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution. J. of Materi Eng and Perform 25, 601–610 (2016). https://doi.org/10.1007/s11665-016-1879-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1879-9

Keywords

Navigation