Skip to main content

Advertisement

Log in

Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion behavior of 18Cr ferritic steel with and without yttria produced by high-energy milling followed by hot extrusion was studied in 3.5% NaCl solution using electrochemical and immersion techniques. The cyclic polarization study showed that pitting corrosion is predominant in all the materials. The pitting rate is higher in yttria dispersed steels and also increases with milling time. Impedance analysis revealed the formation of better corrosion resistance film on the surface of the steel without yttria. Potentiodynamic polarization studies indicated that the corrosion rate decreased up to 48 h of exposure time and increased beyond 48 h. The increase in corrosion rate beyond 48 h is due to the porous passive film. The corrosion behavior of all the materials in immersion studies followed the same trend as observed in electrochemical studies. Even though the corrosion rate of yttria dispersed 18Cr ferritic steel is less than that of the base material, the difference is marginal. The presence of dispersoids appears to promote nucleation of pits when compared to the steel without the dispersoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Zinkle and J.T. Busby, Structural Materials for Fission & Fusion Energy, Mater. Today, 2009, 12, p 12–19

    Article  Google Scholar 

  2. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195

    Article  Google Scholar 

  3. A. Alamo, V. Lambard, X. Averty, and M.H. Mathon, Assessment of ODS-14%Cr Ferritic Alloy for High Temperature Applications, J. Nucl. Mater., 2004, 329–333, p 333–337

    Article  Google Scholar 

  4. G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent Developments in Irradiation-Resistant Steels, Annu. Rev. Mater. Res., 2008, 38, p 471–503

    Article  Google Scholar 

  5. S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757

    Article  Google Scholar 

  6. S. Ukai, Oxide Dispersion Strengthened Steels, Comp. Nucl. Mater., 2012, 4, p 241–271

    Article  Google Scholar 

  7. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Stability of Ferritic MA/ODS Alloys at High Temperatures, Intermetallics, 2005, 13, p 387–392

    Article  Google Scholar 

  8. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys, J. Nucl. Mater., 2005, 341, p 103–114

    Article  Google Scholar 

  9. H.S. Cho, A. Kimura, S. Ukai, and M. Fujiwara, Corrosion Properties of Oxide Dispersion Strengthened Steels in Super-Critical Water Environment, J. Nucl. Mater., 2004, 329–333, p 387–391

    Article  Google Scholar 

  10. A. Kimura, H.S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai, and M. Fujiwara, High Burn Up Fuel Cladding Materials R&D for Advanced Nuclear Systems: Nano-Sized Oxide Dispersion Strengthening Steels, J. Nucl. Sci. Technol., 2007, 44, p 323–328

    Article  Google Scholar 

  11. T. Kaito, T. Narita, S. Ukai, and Y. Matsuda, High Temperature Oxidation Behavior of ODS Steels, J. Nucl. Mater., 2004, 329–333, p 1388–1392

    Article  Google Scholar 

  12. J.H. Kim, K.M. Kim, T.S. Byun, D.W. Lee, and C.H. Park, High Temperature Oxidation Behavior of Nano-structured Ferritic Oxide Dispersion Strengthened Alloys, Thermochem. Acta, 2014, 579, p 1–8

    Article  Google Scholar 

  13. M.J. Alinger, G.R. Odette, and D.T. Hoelzer, On the Role of Alloy Composition and Processing Parameters in Nanocluster Formation and Dispersion Strengthening in Nanostructured Ferritic Alloys, Acta Mater., 2009, 57, p 392–406

    Article  Google Scholar 

  14. J.H. Lee, Development of Oxide Dispersion Strengthened Ferritic Steels with and Without Aluminum, Front. Energy, 2012, 6, p 29–34

    Article  Google Scholar 

  15. J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe, Influence of Alloy Composition and Temperature on Corrosion Behavior of ODS Ferritic Steels, J. Nucl. Mater., 2011, 417, p 1225–1228

    Article  Google Scholar 

  16. H.L. Hu, Z.J. Zhou, L. Liao, L.F. Zhang, M. Wang, S.F. Li, and C.C. Ge, Corrosion Behavior of a 14Cr-ODS Steel in Supercritical Water, J. Nucl. Mater., 2013, 437, p 196–200

    Article  Google Scholar 

  17. H. Je and A. Kimura, Stress corrosion Cracking Susceptibility of Oxide Dispersion Strengthened Ferritic Steel in Supercritical Pressurized Water Dissolved with Different Hydrogen and Oxygen Contents, Corros. Sci., 2014, 78, p 193–199

    Article  Google Scholar 

  18. F.D. Gabriele, S. Amore, C. Scaiola, E. Arato, D. Giuranno, R. Novakovic, and E. Ricci, Corrosion Behaviour of 12Cr-ODS Steel in Molten Lead, Nucl. Eng. Des., 2014, 280, p 69–75

    Article  Google Scholar 

  19. O. Yeliseyeva, V. Tsisara, and Z. Zhou, Corrosion Behavior of Fe-14Cr-2W and Fe-9Cr-2W ODS Steels in Stagnant Liquid Pb with Different Oxygen Concentration at 550 and 650 °C, J. Nucl. Mater., 2013, 442, p 434–443

    Article  Google Scholar 

  20. P. Hosemann, H.T. Thau, A.L. Johnson, S.A. Maloy, and N. Li, Corrosion of ODS Steels in Lead-Bismuth Eutectic, J. Nucl. Mater., 2008, 373, p 246–253

    Article  Google Scholar 

  21. K. Lambrinou, V. Koch, G. Coen, J. Van den Bosch, and C. Schroer, Corrosion Scales on Various Steels After Exposure to Liquid Lead-Bismuth Eutectic, J. Nucl. Mater., 2014, 450, p 244–255

    Article  Google Scholar 

  22. T. Furukawa, S. Kato, and E. Yoshida, Compatibility of FBR Materials with Sodium, J. Nucl. Mater., 2009, 392, p 249–254

    Article  Google Scholar 

  23. E. Yoshida and S. Kato, Sodium Compatibility of ODS Steel at Elevated Temperature, J. Nucl. Mater., 2004, 329–333, p 1393–1397

    Article  Google Scholar 

  24. B. El-Dasher, J. Farmer, J. Ferreira, M. Serrano de Caro, A. Rubenchik, and A. Kimura, Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in fluoride Salt Coolant: An In Situ Compatibility Study for Fusion and Fusion-fission Hybrid Reactor Concepts, J. Nucl. Mater., 2011, 419, p 15–23

    Article  Google Scholar 

  25. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, Corrosion Resistance of 9% Cr Oxide Dispersion Strengthened Steel in Different Electrolytic Media, Corrosion, 2013, 69, p 863–874

    Article  Google Scholar 

  26. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Passive film Characterization and Anodic Polarization Behavior of 11% Cr Ferritic/Martensitic and 15% Cr Oxide Dispersion Strengthened Steels in Different Electrolytic Solutions, Appl. Surf. Sci., 2013, 274, p 345–355

    Article  Google Scholar 

  27. M. Sakairi, S. Ningshen, K. Suzuki, and S. Ukai, Corrosion Study and Passive Film Characterization of 11% Cr F/M and 15% Cr ODS Steels, J Civil Eng Archit, 2013, 7, p 940–955

    Google Scholar 

  28. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Surface Characterization and Corrosion Resistance of 11% Cr Ferritic/Martensitic and 9%-15% Cr ODS Steels for Nuclear Fuel Reprocessing Application, J. Solid State Electrochem., 2014, 18, p 411–425

    Article  Google Scholar 

  29. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, The Corrosion Resistance and Passive film Compositions of 12% Cr and 15% Cr Oxide Dispersion Strengthened Steels in Nitric Acid Media, Corros. Sci., 2014, 78, p 322–334

    Article  Google Scholar 

  30. J. Isselin, R. Kasada, and A. Kimura, Effects of Aluminum on the Corrosion Behavior of 16% Cr ODS Ferritic Steels in a Nitric Acid Solution, J. Nucl. Sci. Technol., 2011, 48, p 169–171

    Article  Google Scholar 

  31. M. Terada, A.J.O. Zimmermann, H.R.Z. Sandim, I. Costa, and A.F. Padilha, Corrosion Behavior of Eurofer 97 and ODS-Eurofer Alloys Compared to Traditional Stainless Steels, J. Appl. Electrochem., 2011, 41, p 951–959

    Article  Google Scholar 

  32. H. Hu, Z. Zhou, M. Li, L. Zhang, M. Wang, S. Li, and C. Ge, Study of the Corrosion Behavior of a 18Cr-Oxide Dispersion Strengthened Steel in Supercritical Water, Corros. Sci., 2012, 65, p 209–213

    Article  Google Scholar 

  33. B. Gwinner, M. Auroy, D. Mas, A. Saint Jevin, and S. Pasquier-Tilliette, Impact of the Use of the Ferritic/Martensitic ODS Steels Cladding on the Fuel Reprocessing PUREX Process, J. Nucl. Mater., 2012, 428, p 110–116

    Article  Google Scholar 

  34. P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12

    Article  Google Scholar 

  35. G. Sundararajan, P. Sudharshan Phani, A. Jyothirmayi, C. Ravi, and C. Gundakaram, The Influence of Heat Treatment on the Microstructural, Mechanical and Corrosion Behaviour of Cold Sprayed SS 316L Coatings, J. Mater. Sci., 2009, 44, p 2320–2326

    Article  Google Scholar 

  36. G.S. Frankal, Pitting Corrosion of Metals: A Review of the Critical Factors, J. Electrochem. Soc., 1998, 145, p 2186–2198

    Article  Google Scholar 

  37. L.M. Calle, R.D Vinje, and L.G. MacDowell, Electrochemical evaluation of stainless steels in acidified sodium chloride solutions, Corrosion/2004, Paper No. 04303 (Houston, TX: NACE)

  38. M. Darabara, L. Bourithis, S. Zinelis, and G.D. Papadimitriou, Susceptibility to Localized Corrosion of Stainless Steel and NiTi Endodontic Instruments in Irrigating Solutions, Int. Endod. J., 2004, 37, p 705–710

    Article  Google Scholar 

  39. A.H. Kandil, A.A. Fahmy Waheed, and H.M.T. Tawfik, Water Chemistry Effect on Corrosion of Nuclear Fuel Cladding Material, Zircaloy-4 (Zr-4), Int. J. Adv. Res., 2014, 2, p 149–162

    Google Scholar 

  40. W.S. Tait, An introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, Pair Docs Publication, Madison, 1994

    Google Scholar 

  41. E. Klar and P.K. Samal, Powder Metallurgy Stainless Steels: Processing, Microstructures and Properties, ASM International, Materials Park, 2007, p 155

    Google Scholar 

  42. Z. Szklarska-Smialowska, Mechanism of Pit Nucleation by Electrical Breakdown of the Passive Film, Corros. Sci., 2002, 44, p 1143–1149

    Article  Google Scholar 

  43. L. Bertolini, B. Elsener, P. Pedeferri, E. Redaelli, and R.B. Polder, Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, Wiley-VCH, Weinheim, 2013

    Book  Google Scholar 

  44. C. Liu, Q. Bi, A. Leyland, and A. Matthews, An Electrochemical Impedance Spectroscopy Study of the Corrosion Behaviour of PVD Coated Steels in 0.5 N NaCl Aqueous Solution: Part II. EIS Interpretation of Corrosion Behaviour, Corros. Sci., 2003, 45, p 1257–1273

    Article  Google Scholar 

  45. R.T. Loto, Pitting Corrosion Evaluation of Austenitic Stainless Steel Type 304 in Acid Chloride Media, J. Mater. Environ. Sci., 2013, 4, p 448–459

    Google Scholar 

Download references

Acknowledgments

The authors thank Mr. G. V. R. Reddy and Mr. M. Ramakrishna for carrying out electron microscopy analysis. They are thankful to Dr. K. Satya Prasad and Dr. B. V. Sarada for valuable technical discussions. The authors gratefully acknowledge Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, for funding (No. IGC/MMG/MMD/ODS/01/2010) the work and NFC, Hyderabad, for carrying out hot extrusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vijay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagini, M., Jyothirmayi, A., Vijay, R. et al. Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling. J. of Materi Eng and Perform 25, 577–586 (2016). https://doi.org/10.1007/s11665-015-1859-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1859-5

Keywords

Navigation