Skip to main content
Log in

Achieving Superplasticity in AZ31 Magnesium Alloy Processed by Hot Extrusion and Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Experiments were conducted on ultrafine-grained AZ31 magnesium alloy sheet which was prepared through nano-grained powders processed by hot extrusion at 300 °C plus hot-rolling for four passes at 200. The superplastic behavior had been evaluated in a low-temperature range of 423-523 K and strain rates varied from 5 × 10−4 to 5 × 10−3 s−1. The experiment results showed that tensile testing revealed the superplastic elongations with a maximum measured elongation of 227% when tested at 523 K and strain rate of 5 × 10−4 s−1. The superplastic deformation behavior was attributed to the ultrafine-grained microstructures. The measured elongations mainly depended upon the initial strain rate and temperature, and the strain rate sensitivity m was ~0.5 for this condition. The results indicated that powder metallurgy and subsequent hot extrusion plus rolling were promising approaches to produce the ultrafine-grained magnesium alloy sheet with superplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Zhang, H. Liao, and C. Coddet, Effects of Processing Parameters on Properties of Selective Laser Melting Mg–9% Al Powder Mixture, Mater. Des., 2012, 34, p 753–758

    Article  Google Scholar 

  2. D. Sun, C. Chang, and P. Kao, Microstructural Study of Strain Localization in Hot Compressed Mg-3Al-1Zn Alloy, Mater. Sci. Eng., A, 2010, 526, p 7050–7056

    Article  Google Scholar 

  3. Q. Miao, L. Hu, X. Wang, and E. Wang, Grain growth Kinetics of a Fine-Grained AZ31 Magnesium Alloy Produced by Hot Rolling, J. Alloy. Compd., 2010, 493, p 87–90

    Article  Google Scholar 

  4. R. Panicker, A. Chokshi, R. Mishra, R. Verma, and P. Krajewski, Microstructural Evolution and Grain Boundary Sliding in a Superplastic Magnesium AZ31 Alloy, Acta Mater., 2009, 57, p 3683–3693

    Article  Google Scholar 

  5. T.G. Langdon, The Mechanical Properties of Superplastic Materials, Metall. Mater. Trans. A, 1982, 13, p 689–701

    Article  Google Scholar 

  6. L.C. Zhang, M. Calin, F. Paturaud, and J. Eckert, Deformation-Induced Grain Refinement in Body-Centered Cubic Co-Fe Alloys Upon Room Temperature compression, Mater. Sci. Eng., A, 2010, 527, p 5796–5800

    Article  Google Scholar 

  7. L. Hu, Y. Wu, Y. Yuan, and H. Wang, Microstructure Nanocrystallization of a Mg-3 wt.% Al-1 wt.% Zn Alloy by Mechanically Assisted Hydriding-Dehydriding, Mater. Lett., 2008, 62, p 2984–2987

    Article  Google Scholar 

  8. B. Tolaminejad and K. Dehghani, Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Mater. Des., 2012, 34, p 285–292

    Article  Google Scholar 

  9. H. Watanabe, T. Mukai, and K. Higashi, Superplasticity in a ZK60 Magnesium Alloy at Low Temperatures, Scr. Mater., 1999, 40, p 477–484

    Article  Google Scholar 

  10. G. Sakai, Z. Horita, and T.G. Langdon, Grain Refinement and Superplasticity in an Aluminum Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng., A, 2005, 393, p 344–351

    Article  Google Scholar 

  11. S.H. Kang, Y.S. Lee, and J.H. Lee, Effect of Grain Refinement of Magnesium Alloy AZ31 by Severe Plastic Deformation on Material Characteristics, J. Mater. Process. Technol., 2008, 201, p 436–440

    Article  Google Scholar 

  12. A. Yamashita, Z. Horita, and T.G. Langdon, Improving the Mechanical Properties of Magnesium and a Magnesium Alloy Through Severe Plastic Deformation, Mater. Sci. Eng., A, 2001, 300, p 142–147

    Article  Google Scholar 

  13. M. Kai, Z. Horita, and T.G. Langdon, Developing Grain Refinement and Superplasticity in a Magnesium Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng., A, 2008, 488, p 117–124

    Article  Google Scholar 

  14. M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, Experimental Investigation of Superplastic Behaviour in Magnesium Alloys, Mater. Sci. Technol. Ser., 1997, 13, p 825–831

    Article  Google Scholar 

  15. K. Kubota, M. Mabuchi, and K. Higashi, Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys, J. Mater. Sci., 1999, 34, p 2255–2262

    Article  Google Scholar 

  16. T. Mukai, H. Watanabe, and K. Higashi, Application of Superplasticity in Commercial Magnesium Alloy for Fabrication of Structural Components, Mater. Sci. Technol., 2000, 16(11), p 1314–1319

    Article  Google Scholar 

  17. Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, and M. Mabuchi, Superplasticity and Grain Boundary Sliding in Rolled AZ91 Magnesium Alloy at High Strain Rates, Mater. Sci. Eng., A, 2003, 360, p 107–115

    Article  Google Scholar 

  18. Hidetoshi Somekawa and Toshiji Mukai, Effect of Dominant Diffusion Process on Cavitation Behavior in Superplastic Mg–Al–Zn Alloy, Scr. Mater., 2007, 57, p 1008–1011

    Article  Google Scholar 

  19. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries, Acta Mater., 1999, 47, p 2047–2057

    Article  Google Scholar 

  20. T. McNelley, E. Lee, and M. Mills, Superplasticity in a Thermomechanically Processed High-Mg, Al-Mg Alloy, Metall. Mater. Trans. A, 1986, 17, p 1035–1041

    Article  Google Scholar 

  21. R.Z. Valiev, N. Krasilnikov, and N. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng., A, 1991, 137, p 35–40

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201416), and Scientific Foundation of Nanjing Institute of Technology (YKJ201403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, M., Ma, W. et al. Achieving Superplasticity in AZ31 Magnesium Alloy Processed by Hot Extrusion and Rolling. J. of Materi Eng and Perform 25, 64–67 (2016). https://doi.org/10.1007/s11665-015-1826-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1826-1

Keywords

Navigation