Skip to main content
Log in

Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density (J sc) and the open-circuit voltage (V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al ••Cu 2O i ) with tetrahedrally coordinated Al on the Cu-site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Grätzel, Photoelectrochemical cells, Nature, 2001, 414(6861), p 338–344

    Article  Google Scholar 

  2. M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Acc. Chem. Res., 2009, 42(11), p 1788–1798

    Article  Google Scholar 

  3. J.J. He, H. Lindstrom, A. Hagfeldt, and S.E. Lindquist, Cells, Dye-Sensitized Nanostructured Tandem Cell-First Demonstrated Cell with a Dye-Sensitized Photocathode, Sol. Energy Mater. Sol., 2000, 62(3), p 265–273

    Article  Google Scholar 

  4. A. Nattestad, A.J. Mozer, M.K.R. Fischer, Y.B. Cheng, A. Mishra, P. Bäuerle, and U. Bach, Highly Efficient Photocathodes for Dye-Sensitized Tandem Solar Cells, Nat. Mater., 2010, 6, p 31–35

    Article  Google Scholar 

  5. S. Powar, T. Daeneke, T.M. Michelle, and U. Bach, Highly Efficient p-Type Dye-Sensitized Solar Cells Based on Tris(1,2-diaminoethane)Cobalt(II)/(III) Electrolytes, Angew. Chem. Int. Ed., 2013, 52(2), p 602–605

    Article  Google Scholar 

  6. Y. Mizoguchi and S. Fujihara, Fabrication and Dye-Sensitized Solar Cell Performance of Nanostructured NiO/Coumarin 343 Photocathodes, Electrochem. Solid-State Lett., 2008, 11(8), p 78–80

    Article  Google Scholar 

  7. E.A. Gibson, A.L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, and L. Hammarström, A p-Type NiO Based Dye Sensitised Solar Cell with Voc of 0.35 V, Angew. Chem. Int. Ed., 2009, 48, p 4402–4405

    Article  Google Scholar 

  8. X.L. Zhang, F. Huang, A. Nattestad, K. Wang, D. Fu, A. Mishra, P. Bäuerle, U. Bach, and Y.B. Cheng, Enhanced Open-Circuit Voltage of p-Type DSC with Highly Crystalline NiO Nanoparticles, Chem. Commun., 2011, 47(16), p 4808–4810

    Article  Google Scholar 

  9. F. Odobel, L. Le Pleux, Y. Pellegrin, and E. Blart, New Photovoltaic Devices Based on the Sensitization of p-Type Semiconductors: Challenges and Opportunities, Acc. Chem. Res., 2010, 43(8), p 1063–1071

    Article  Google Scholar 

  10. F. Odobel, Y. Pellegrin, E.A. Gibson, A. Hagfeldt, A.L. Smeigh, and L. Hammarström, Recent Advances and Future Directions to Optimize the Performances of p-Type Dye-Sensitized Solar Cells, Coord. Chem. Rev., 2012, 256, p 2414–2423

    Article  Google Scholar 

  11. M. Yu, G. Natu, Z. Ji, and Y. Wu, p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV, J. Phys. Chem. Lett., 2012, 3(9), p 1074–1078

    Article  Google Scholar 

  12. D. Xiong, W. Zhang, X. Zeng, Z. Xu, W. Chen, J. Cui, M. Wang, L. Sun, and Y.B. Cheng, Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals, ChemSusChem., 2013, 6(8), p 1432–1437

    Article  Google Scholar 

  13. K. Ueda, T. Hase, H. Yanagi, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, Epitaxial Growth of Transparent p-Type Conducting CuGaO2 Thin Films on Sapphire (001) Substrates by Pulsed Laser Deposition, J. Appl. Phys., 2001, 89, p 1790–1793

    Article  Google Scholar 

  14. P.S. Patil and L.D. Kadam, Preparation and Characterization of Spray Pyrolyzed Nickel Oxide (NiO) Thin Films, Appl. Surf. Sci., 2000, 199(1), p 211–221

    Google Scholar 

  15. R. Srinivasan, B. Chavillon, C. Doussier-Brochard, L. Cario, M. Paris, E. Gautron, P. Deniard, F. Odobel, and S. Jobic, Tuning the Size and Color of the p-Type Wide Band Gap Delafossite Semiconductor CuGaO2 with Ethylene Glycol Assisted Hydrothermal Synthesis, J. Mater. Chem., 2008, 18, p 5647–5653

    Article  Google Scholar 

  16. W. Wagner and A. Pruss, International Equations for the Saturation Properties of Ordinary Water Substance, J. Phys. Chem. Ref. Data, 1993, 22, p 783–787

    Article  Google Scholar 

  17. M. Amamia, C.V. Colin, P. Strobel, and A. BenSalah, Al-Doping Effect on the Structural and Physical Properties of Delafossite-Type Oxide CuCrO2, Phys. B, 2011, 406, p 2182–2185

    Article  Google Scholar 

  18. H. Wang, X. Xiang, F. Li, D.G. Evans, and X. Duan, Investigation of the Structure and Surface Characteristics of Cu–Ni–M(III) Mixed Oxides (M = Al, Cr and In) Prepared from Layered Double Hydroxide Precursors, Appl. Surf. Sci., 2009, 255(15), p 6945–6952

    Article  Google Scholar 

  19. T.A. Zepeda, A.I. Molina, J.N.D. Leon, R.O. Estrella, S. Fuentes, G. Alonso-Nuňez, and B. Pawelec, Synthesis and Characterization of Ga-Modified Ti-HMS Oxide Materials with Varying Ga Content, J. Mol. Catal. A: Chem., 2015, 397, p 26–35

    Article  Google Scholar 

  20. A. N. Banerjee and K. K. Chattopadhyay, P-Type Transparent Semiconducting Delafossite CuAlO2+x Thin Film: Promising Material for Optoelectronic Devices and Field-Emission Displays, Materials Science Research Trends, L. V. Olivante, Ed., 2007, 2 Nova Science Publishers, Inc., p 1–116.

  21. T. Prakash, K. Padma Prasad, S. Ramasam, and B.S. Murty, Optical and Electrical Properties of Mechanochemically Synthesized Nanocrystalline Delafossite CuAlO2, J. Nanosci. Nanotechnol., 2008, 8, p 4273–4278

    Article  Google Scholar 

  22. P. Kubelka and F. Munk, An Article on Optics of Paint Layers, Zh. Tekh. Fiz., 1931, 12, p 593–620

    Google Scholar 

  23. P. Kubelka, New Contributions to the Optics of Intensely Light-Scattering Materials, J. Opt. Soc. Am., 1948, 38, p 448–457

    Article  Google Scholar 

  24. H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa, and H. Hosono, Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides, J. Electroceram., 2000, 4(2–3), p 407–414

    Article  Google Scholar 

  25. M. Han, K. Jiang, J. Zhang, W. Yu, Y. Li, Z. Hu, and J. Chu, Structural, Electronic Band Transition and Optoelectronic Properties Of Delafossite CuGa1−xCrxO2 (0 ≤ x ≤ 1) solid Solution Films Grown by the Sol–Gel Method, J. Mater. Chem., 2012, 22, p 18463–18470

    Article  Google Scholar 

  26. H. Nagatani, I. Suzuki, M. Kita, M. Tanaka, Y. Katsuya, O. Sakata, S. Miyoshi, S. Yamaguchi, and T. Omata, Structural and Thermal Properties of Ternary Narrow-Gap Oxide Semiconductor; Wurtzite-Derived β-CuGaO2, Inorg. Chem., 2015, 54(4), p 1698–1704

    Article  Google Scholar 

  27. D. Ursu and M. Miclau, Thermal Stability of Nanocrystalline 3R-CuCrO2, J. Nanopart. Res., 2014, 16, p 2160

    Article  Google Scholar 

  28. B.J. Ingram, G.B. Gonzalez, T.O. Mason, D. Shahriari, and A. Bernab, `E, D. Ko, K. Poppelmeier, Transport and Defect Mechanisms in Cuprous Delafossites. 1. Comparison of Hydrothermal and Standard Solid-State Synthesis in CuAlO2, Chem. Mater., 2004, 16(26), p 5616–5622

    Article  Google Scholar 

Download references

Acknowledgment

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD) and financed by the European Social Fund and by the Romanian Government under the project number POSDRU/159/1.5/S/134378 and PN-II-RU-TE-2014-4-1 142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Miclau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ursu, D., Vaszilcsin, N., Bănica, R. et al. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells. J. of Materi Eng and Perform 25, 59–63 (2016). https://doi.org/10.1007/s11665-015-1814-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1814-5

Keywords

Navigation