Skip to main content

Advertisement

Log in

Highly efficiency p-type dye sensitized solar cells based on polygonal star-morphology Cu2O material of photocathodes

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Cuprous oxide(Cu2O), as an important p-type semiconductor, has been widely investigated due to its high electron transmission and facile preparation. However, the electrode made of only Cu2O has been rarely investigated. In order to demonstrate the possibility that material Cu2O can be applied to the electrode of p-type dye sensitized solar cells(DSSCs), the photo-electrodes made of prepared Cu2O powder and commercial Cu2O particles have been fabricated. The results show that the electrode based on as-prepared Cu2O(Cu2O-2) powder exhibits higher performance than that based on commercial Cu2O(Cu2O-1) particle. The device based on Cu2O-2 electrode reaches into an open-circuit voltage of 0.71 V, a short-circuit current density of 1.3 mA/cm2, a fill factor(FF) of 46%, and a conversion efficiency of 0.42% measured under AM 1.5G(100 mW/cm2) illumination. The enhancement performance of Cu2O-2 is attributed to the high dye adsorption of Cu2O-2 compared with that of Cu2O-1. To the best of our knowledge, this is the highest conversion efficiency value reported for solar cells based on Cu2O-DSSC. This work provides that Cu2O is also a candidate for constructing the electrode of p-type dye sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B., Grätzel M., Nature, 1991, 353, 737

    Article  Google Scholar 

  2. Bai Y., Cao Y. M., Zhang J., Wang M., Li R. Z., Wang P., Zakeeruddin S. M., Grätzel M., Nat. Mater., 2008, 7, 626

    Article  CAS  Google Scholar 

  3. Bulter D., Nature, 2008, 454, 558

    Article  Google Scholar 

  4. Xin X. K., He M., Han W., Jung J., Lin Z. Q., Angew. Chem. Int. Ed., 2011, 50, 11739

    Article  CAS  Google Scholar 

  5. Hagfeldt A., Boschloo G., Sun L. C., Kloo L., Pettersson H., Chem. Rev., 2010, 110, 6595

    Article  CAS  Google Scholar 

  6. Lepleux L., Chavillon B., Pellegrin Y., Blart E., Cario L., Odobel F., Inorg. Chem., 2009, 48, 8245

    Article  CAS  Google Scholar 

  7. Mahalingam T., Chitra J. S. P., Chu J. P., Moon H., Kwon H. J., Kim Y. D., J. Mater. Sci.-Mater. Electron., 2006, 17, 519

    Article  CAS  Google Scholar 

  8. Tang Y. W., Chen Z. G., Jia Z. J., Zhang L. S., Li J. L., Mater. Lett., 2005, 59, 434

    Article  CAS  Google Scholar 

  9. Fernando C. A. N., Kumara N. T. R. N., Gamage T. N., Semicond. Sci. Technol., 2010, 25, 115007

    Article  Google Scholar 

  10. Powar S., Daeneke T., Ma M. T., Fu D., Duffy N. W., Angew. Chem., 2013, 125, 630

    Article  Google Scholar 

  11. Mahalingam T., Chitra J. S. P., Ravi G., Chu J. P., Sebastian P. J., Surf. Coat. Technol., 2003, 168, 111

    Article  CAS  Google Scholar 

  12. Liu X. Y., Hu R. Z., Xiong S. L., Liu Y. K., Chai L. L., Bao K. Y., Qian Y. T., Mater. Chem. Phys., 2009, 114, 213

    Article  CAS  Google Scholar 

  13. Hou Y., Li X. Y., Zhao Q. D., Quan X., Chen G. H., Appl. Phys. Lett., 2009, 95, 093108

    Article  Google Scholar 

  14. Sui Y. M., Fu W. Y., Zeng Y., Yang H. B., Zhang Y. Y., Chen H., Li Y. X., Li M. H., Zou G. T., Angew. Chem. Int. Ed., 2010, 49, 4282

    Article  CAS  Google Scholar 

  15. Cheng P. F., Du S. S., Cai Y. X., Liu F. M., Sun P., Zheng J., Lu G. Y., J. Phys. Chem. C, 2013, 17, 24150

    Article  Google Scholar 

  16. Cheng P. F., Cai Y. X., Du S. S., Sun P., Lu G. Y., Zheng J., Liu F. M., RSC Adv., 2013, 3, 23389

    Article  CAS  Google Scholar 

  17. Jose R., Thavasi V., Ramakrishna S., J. Am. Ceram. Soc., 2009, 92, 289

    Article  CAS  Google Scholar 

  18. Tian H. M., Zhang J. Y., Wang X. Y., Yu T., Zou Z. G., Measurement, 2011, 44, 1551

    Article  Google Scholar 

  19. He J. J., Lindstrom H., Hagfeldt A., Lindquist S. E., Sol. Energy Mater. Sol. Cells, 2000, 62, 265

    Article  CAS  Google Scholar 

  20. Yuhas B. D., Yang P. D., J. Am. Chem. Soc., 2009, 131, 3756

    Article  CAS  Google Scholar 

  21. Shao F., Sun J., Gao L., Liu Y. Q., Yang S. W., Adv. Funct. Mater., 2012, 22, 3907

    Article  CAS  Google Scholar 

  22. Sumikura S., Mori S., Shimizu S., Usami H., Suzuki E. J., J. Photoch. Photobioa., 2008, 199, 1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengmin Liu or Geyu Lu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.60906036, 61134010 and 61327804), the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13018), the National High Technolgy Research and Development Program of China(No.2013AA030902) and the Project Development Plan of Science and Technology of Jilin Province, China(No.20130521009JH).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Cheng, P., Sun, P. et al. Highly efficiency p-type dye sensitized solar cells based on polygonal star-morphology Cu2O material of photocathodes. Chem. Res. Chin. Univ. 30, 661–665 (2014). https://doi.org/10.1007/s40242-014-4020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4020-3

Keywords

Navigation