Skip to main content
Log in

Effects of Homogenization on Hot Deformation Behavior of As-Cast Mg-8Gd-3Y-1Nd-0.5Zr Magnesium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The flow stress behaviors of both the as-cast and homogenized Mg-8Gd-3Y-1Nd-0.5Zr alloy were investigated using a Gleeble-1500 thermal simulation test machine in the temperature range of 460-520 °C and strain rate range of 0.001-1 s−1. The processing maps for the two alloys were developed on the basis of flow stress data obtained at a strain of 0.5. It was found that the processing maps of both the as-cast alloy and homogenized alloy consisted of one stability and one instability domains. According to the processing maps and the microstructural observations, the optimum hot-working parameters for the two alloys were determined to be at a temperature of 500 °C and at a strain rate of 0.01 s−1. The hot workability of the homogenized alloy was better than the as-cast alloy in the safe domain, while the homogenization treatment increased the instability domain. The microvoids, which initiated along the dynamic recrystallized (DRX) grain boundaries and led to intercrystalline cracking, were an important factor contributing to the expanded instability domains for the homogenized alloy. Dynamic precipitation in the DRX grain in the as-cast alloy contributed to a lower DRX, hence prevented the formation of microvoids, which resulted in a reduced tendency for DRX intercrystalline cracking during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Chandrasekaran and Y.M.S. John, Effect of Materials and Temperature on the Forward Extrusion of Magnesium Alloys, Mater. Sci. Eng. A, 2004, 38, p 308–319

    Article  Google Scholar 

  2. Q. Guo, H.G. Yan, H. Zhang, Z.H. Chen, and Z.F. Wang, Behaviour of AZ31 Magnesium Alloy During Compression at Elevated Temperatures, Mater. Sci. Technol., 2005, 21, p 1349–1354

    Article  Google Scholar 

  3. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng. A, 2002, 337, p 121–133

    Article  Google Scholar 

  4. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening Precipitation in a Mg-4Y-3RE Alloy, Acta Mater., 2003, 51, p 5335–5348

    Article  Google Scholar 

  5. B. Chen, D. Lin, X. Zeng, and C. Lu, Effects of Yttrium and Zinc Addition on the Microstructure and Mechanical Properties of Mg-Y-Zn Alloys, J. Mater. Sci., 2010, 45, p 2510–2517

    Article  Google Scholar 

  6. L. Zheng, C.M. Liu, J. Jin, X. Wang, and D.W. Ji, Effect of Hot Rolling on Microstructures and Mechanical Properties of Extruded Mg-6Gd-3.2Y-xZn-0.5Zr Sheet, J. Mater. Eng. Perform., 2013, 22, p 104–111

    Article  Google Scholar 

  7. X. Xia, Q. Chen, K. Zhang, Z. Zhao, M. Ma, X. Li, and Y. Li, Hot Deformation Behavior and Processing Map of Coarse-Grained Mg-Gd-Y-Nd-Zr Alloy, Mater. Sci. Eng. A, 2013, 587, p 283–290

    Article  Google Scholar 

  8. X. Xia, K. Zhang, X. Li, M. Ma, and Y. Li, Microstructure and Texture of Coarse-Grained Mg-Gd-Y-Nd-Zr Alloy After Hot Compression, Mater. Des., 2013, 44, p 521–527

    Article  Google Scholar 

  9. X. Xia, Q. Chen, Z. Zhao, M. Ma, X. Li, and K. Zhang, Microstructure, Texture and Mechanical Properties of Coarse-Grained Mg-Gd-Y-Nd-Zr Alloy Processed by Multidirectional Forging, J. Alloys Compd., 2015, 623, p 62–68

    Article  Google Scholar 

  10. Y.V.R.K. Prasad and K.P. Rao, Effect of Homogenization on the Hot Deformation Behavior of Cast AZ31 Magnesium Alloy, Mater. Des., 2009, 30, p 3723–3730

    Article  Google Scholar 

  11. M. Mu, Z. Zhi-Min, Z. Bao-Hong, and D. Jin, Flow Behaviors and Processing Maps of As-Cast and As-Homogenized AZ91 Alloy, J. Alloys Compd., 2012, 513, p 112–117

    Article  Google Scholar 

  12. Q.Z. Peng, H.T. Zhou, F.H. Zhong, H.B. Ding, X. Zhou, R.R. Liu, T. Xie, and Y. Peng, Effects of Homogenization Treatment on the Microstructure and Mechanical Properties of Mg-8Li-3Al-Y Alloy, Mater. Des., 2015, 66, p 566–574

    Article  Google Scholar 

  13. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, and G.J. Wang, Microstructures and Mechanical Properties of High-Strength Mg-Gd-Y-Zn-Zr Alloy Sheets Processed by Severe Hot Rolling, J. Alloys Compd., 2012, 528, p 40–44

    Article  Google Scholar 

  14. Z. Yang, J.P. Li, J.X. Zhang, Y.C. Guo, B.W. Wang, F. Xia, and M.X. Liang, Effect of Homogenization on the Hot-Deformation Ability and Dynamic Recrystallization of Mg-9Gd-3Y-0.5Zr Alloy, Mater. Sci. Eng. A, 2009, 515, p 102–107

    Article  Google Scholar 

  15. K.P. Rao, Y.V.R.K. Prasad, K. Suresh, N. Hort, and K.U. Kainer, Hot Deformation Behavior of Mg-2Sn-2Ca Alloy in As-Cast Condition and After Homogenization, Mater. Sci. Eng. A, 2012, 552, p 444–450

    Article  Google Scholar 

  16. Y.V.R.K. Prasad, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88

    Article  Google Scholar 

  17. O. Sivakesavam, I.S. Rao, and Y.V.R.K. Prasad, Processing Maps for Hot Working of As Cast Magnesium, Mater. Sci. Technol., 1993, 9, p 805–810

    Google Scholar 

  18. Y.V.R.K. Prasad and K.P. Rao, Mechanisms of High Temperature Deformation in Electrolytic Copper in Extended Ranges of Temperature and Strain Rate, Mater. Sci. Eng. A, 2004, 374, p 335–341

    Article  Google Scholar 

  19. M. Li, K. Zhang, X. Li, Y. Li, M. Ma, G. Shi, J. Yuan, T. Li, and J. Liu, The Research of Microstructure and Mechanical Properties of Mg-7Gd-3Y-1Nd-0.5Zn-0.5Zr (wt.%) Alloy, Mater. Sci. Eng. A, 2015, 626, p 415–422

    Article  Google Scholar 

  20. S. He, X. Zeng, L. Peng, X. Gao, J. Nie, and W. Ding, Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-0.5Zr Alloy, J. Alloys Compd., 2007, 427, p 316–323

    Article  Google Scholar 

  21. D.H.J. Li and X.Q. Zeng, Characterization of β″ Precipitate Phase in a Mg-Dy-Gd-Nd Alloy, Mater Charact., 2007, 58, p 1025–1028

    Article  Google Scholar 

  22. I.A. Anyanwu, S. Kamado, and Y. Kojima, Creep Properties of Mg-Gd-Y-Zr Alloys, Mater. Trans., 2001, 42, p 1212–1218

    Article  Google Scholar 

  23. Q. Li, Q. Wang, H. Zhou, X. Zeng, Y. Zhang, and W. Ding, High Strength Extruded Mg-5Zn-2Nd-1.5Y-0.6Zr-0.4Ca Alloy Produced by Electromagnetic Casting, Mater. Lett., 2005, 59, p 2549–2554

    Article  Google Scholar 

  24. Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, and W.J. Ding, The Microstructure Evolution with Lamellar 14H-Type LPSO Structure in an Mg 96.5 Gd 2.5 Zn 1 Alloy During Solid Solution Heat Treatment at 773 K, J. Alloy. Compd., 2009, 477, p 193–197

    Article  Google Scholar 

  25. D.D. Yin, Q.D. Wang, and Y. Gao, Effects of Heat Treatments on Microstructure and Mechanical Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy, J. Alloy. Compd., 2011, 509, p 1696–1704

    Article  Google Scholar 

  26. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening Precipitation in a Mg-4Y-3RE Alloy, Acta Mater., 2003, 51, p 5335–5348

    Article  Google Scholar 

  27. Y. Yang, Z. Zhang, and X. Zhang, Processing Map of Al2O3 Particulate Reinforced Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2012, 558, p 112–118

    Article  Google Scholar 

  28. Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597

    Article  Google Scholar 

  29. Y. Yang, Z. Xie, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, Processing Maps for Hot Deformation of the Extruded 7075 Aluminum Alloy Bar: Anisotropy of Hot Workability, Mater. Sci. Eng. A, 2014, 615, p 183–190

    Article  Google Scholar 

  30. B. Chen, W.-M. Zhou, S. Li, X.-L. Li, and C. Lu, Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, J. Mater. Eng. Perform., 2013, 22, p 2458–2466

    Article  Google Scholar 

  31. J.A. Yasi, L.G. Hector, Jr., and D.R. Trinkle, First-Principles Data for Solid-Solution Strengthening of Magnesium: From Geometry and Chemistry to Properties, Acta Mater., 2010, 58, p 5704–5713

    Article  Google Scholar 

  32. Y.P. Fan, Q.M. Peng, J.L. Pan, G.L. Bi, and B.Z. Liu, Strengthening Precipitate, Thermal Stability, and Mechanical Properties of Melt-Spun Mg-8Gd-3Nd Alloy, J. Mater. Eng. Perform., 2014, 23, p 250–254

    Article  Google Scholar 

  33. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical Properties of Warm-Extruded Mg-Zn-Gd Alloy with Coherent 14H Long Periodic Stacking Ordered Structure Precipitate, Sci. Mater., 2005, 53, p 799–803

    Google Scholar 

  34. Y. Xue, Z. Zhang, G. Lu, Z. Xie, Y. Yang, and Y. Cui, Study on Flow Stress Model and Processing Map of Homogenized Mg-Gd-Y-Zn-Zr Alloy During Thermomechanical Processes, J. Mater. Eng. Perform., 2015, 24, p 964–971

    Article  Google Scholar 

Download references

Acknowledgment

The project was supported by Program for New Century Excellent Talents in University (NCET-13-1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Tan, Y., Zhang, Z. et al. Effects of Homogenization on Hot Deformation Behavior of As-Cast Mg-8Gd-3Y-1Nd-0.5Zr Magnesium Alloy. J. of Materi Eng and Perform 25, 304–311 (2016). https://doi.org/10.1007/s11665-015-1807-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1807-4

Keywords

Navigation