Skip to main content
Log in

Effect of Heat Treatment on the Microstructure and Micro-mechanical Behavior of Quenched Ti-6Al-4V Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To determine the influence of the solution treatment temperature and holding time on the microstructure and micro-mechanical behavior of Ti-6Al-4V alloys, micro-indentation experiments were conducted at maximum loads of 3000, 3500, 4500, 4600, 4700, 4800, and 4900 mN. A microstructure examination was also performed with an optical microscope. Based on the test data, the micro-hardness H, Young’s modulus E, yield strength σy, ultimate tensile strength σ b , and strain-hardening exponent n were obtained by the Oliver-Pharr method. It was found that the solution treatment temperature and holding time had a significant influence on the morphology, size, and volume fraction of the α and β phases. The equiaxed microstructure (obtained at 950 °C) exhibits a higher H, E, and σb. In contrast, σy shows a downward trend over the entire range of solution treatment temperatures. The influences of holding time on H, E, σb, and σy were also significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Crone, H. Brock, and A. Creuziger, Nanoindentation and Microindentation of CuAlNi Shape Memory Alloy, Exp. Mech., 2007, 47(1), p 133

    Article  Google Scholar 

  2. H.-J. Schindler, On Quasi-non-destructive Strength and Toughness Testing of Elastic-Plastic Materials, Int. J. Solids Struct., 2005, 42(2), p 717

    Article  Google Scholar 

  3. D. Strange and A. Varshneya, Finite Element Simulation of Microindentation on Aluminum, J. Mater. Sci., 2001, 36(8), p 1943

    Article  Google Scholar 

  4. Y. Liu and A. Ngan, Depth Dependence of Hardness in Copper Single Crystals Measured by Nanoindentation, Scr. Mater., 2001, 44(2), p 237

    Article  Google Scholar 

  5. J. Cai, F. Li, T. Liu, and B. Chen, Investigation of Mechanical Behavior of Quenched Ti-6Al-4V Alloy by Microindentation, Mater. Charact., 2011, 62(3), p 287

    Article  Google Scholar 

  6. J. Cai, F. Li, T. Liu, and B. Chen, Microindentation Study of Ti-6Al-4V Alloy, Mater. Des., 2011, 32(5), p 2756

    Article  Google Scholar 

  7. T. Venkatesh, K. Van Vliet, A. Giannakopoulos, and S. Suresh, Determination of Elasto-plastic Properties by Instrumented Sharp Indentation: Guidelines for Property Extraction, Scr. Mater., 2000, 42(9), p 833

    Article  Google Scholar 

  8. X.-L. Gao, X. Jing, and G. Subhash, Two New Expanding Cavity Models for Indentation Deformations of Elastic Strain-Hardening Materials, Int. J. Solids Struct., 2006, 43(7), p 2193

    Article  Google Scholar 

  9. N. Poondla, T. Srivatsan, A. Patnaik, and M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti-6Al-4V, J. Alloy. Compd., 2009, 486(1), p 162

    Article  Google Scholar 

  10. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The Effect of Microstructure on the Mechanical Properties of two-Phase Titanium Alloys, J. Mater. Process. Technol., 2003, 133(1–2), p 84

    Article  Google Scholar 

  11. N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Des., 2014, 54, p 96

    Article  Google Scholar 

  12. S. Akbari Mousavi, A. Shahab, and M. Mastoori, Computational Study of Ti-6Al-4V Flow Behaviors During the Twist Extrusion Process, Mater. Design., 2008, 29(7), p 1316

    Article  Google Scholar 

  13. W. Yu, M. Li, J. Luo, S. Su, and C. Li, Prediction of the Mechanical Properties of the Post-Forged Ti-6Al-4V Alloy Using Fuzzy Neural Network, Mater. Des., 2010, 31(7), p 3282

    Article  Google Scholar 

  14. M. Vanderhasten, L. Rabet, and B. Verlinden, Ti-6Al-4V: Deformation Map and Modelisation of Tensile Behaviour, Mater. Des., 2008, 29(6), p 1090

    Article  Google Scholar 

  15. X. Li, G. Guo, J. Xiao, N. Song, and D. Li, Constitutive Modeling and the Effects of Strain-Rate and Temperature on the Formability of Ti-6Al-4V Alloy Sheet, Mater. Des., 2014, 55, p 325

    Article  Google Scholar 

  16. R. Ding, Z. Guo, and A. Wilson, Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2002, 327(2), p 233

    Article  Google Scholar 

  17. J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and F. Xue, Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain, Mater. Des., 2012, 42, p 369

    Article  Google Scholar 

  18. F. Xue, F. Li, J. Li, M. He, Z. Yuan, and R. Wang, Numerical Modeling Crack Propagation of Sheet Metal Forming Based on Stress State Parameters Using XFEM Method, Comput. Mater. Sci., 2013, 69, p 311

    Article  Google Scholar 

  19. X. Ma, F. Li, J. Li, Q. Wang, Z. Yuan, and Y. Fang, Analysis of Forming Limits Based on a New Ductile Damage Criterion in St14 Steel Sheets, Mater. Des., 2015, 68, p 134

    Article  Google Scholar 

  20. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(06), p 1564

    Article  Google Scholar 

  21. N. Janakiraman and F. Aldinger, Indentation Analysis of Elastic and Plastic Deformation of Precursor-Derived Si-C-N Ceramics, J. Eur. Ceram. Soc., 2010, 30(3), p 775

    Article  Google Scholar 

  22. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y.-L. Shen, Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling, Acta Mater., 2007, 55(12), p 4015

    Article  Google Scholar 

  23. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(01), p 3

    Article  Google Scholar 

  24. K. Durst, B. Backes, and M. Göken, Indentation Size Effect in Metallic Materials: Correcting for the Size of the Plastic Zone, Scr. Mater., 2005, 52(11), p 1093

    Article  Google Scholar 

  25. Y.-T. Cheng and C.-M. Cheng, Scaling Approach to Conical Indentation in Elastic-Plastic Solids with Work Hardening, J. Appl. Phys., 1998, 84(3), p 1284

    Article  Google Scholar 

  26. Y.-T. Cheng and C.-M. Cheng, Relationships Between Hardness, Elastic Modulus, and the Work of Indentation, Appl. Phys. Lett., 1998, 73(5), p 614

    Article  Google Scholar 

  27. K. Tunvisut, N.P. O’Dowd, and E.P. Busso, Use of Scaling Functions to Determine Mechanical Properties of Thin Coatings from Microindentation Tests, Int. J. Solids Struct., 2001, 38(2), p 335

    Article  Google Scholar 

  28. M. Dao, N. Chollacoop, K. Van Vliet, T. Venkatesh, and S. Suresh, Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, 49(19), p 3899

    Article  Google Scholar 

  29. F.X. Gil Mur, D. Rodríguez, and J.A. Planell, Influence of Tempering Temperature and Time on the α′-Ti-6Al-4V Martensite, J. Alloys Compd., 1996, 234(2), p 287

    Article  Google Scholar 

  30. J. Dong, F. Li, and C. Wang, Micromechanical Behavior Study of α Phase with Different Morphologies of Ti-6Al-4V Alloy by Microindentation, Mater. Sci. Eng. A, 2013, 580, p 105

    Article  Google Scholar 

  31. B. Guelorget, M. François, and J. Lu, Microindentation as a Local Damage Measurement Technique, Mater. Lett., 2007, 61(1), p 34

    Article  Google Scholar 

  32. F. Baltá Calleja, A. Flores, and G. Michler, Microindentation studies at the near surface of glassy polymers: Influence of molecular weight, J. Appl. Polym. Sci., 2004, 93(4), p 1951

    Article  Google Scholar 

  33. F. Petit, V. Vandeneede, and F. Cambier, Relevance of Instrumented Micro-indentation for the Assessment of Hardness and Young’s Modulus of Brittle Materials, Mater. Sci. Eng. A., 2007, 456(1–2), p 252

    Article  Google Scholar 

  34. J.-S. Lee, J.-I. Jang, B.-W. Lee, Y. Choi, S.G. Lee, and D. Kwon, An Instrumented Indentation Technique for Estimating Fracture Toughness of Ductile Materials: A Critical Indentation Energy Model Based on Continuum Damage Mechanics, Acta Mater., 2006, 54(4), p 1101

    Article  Google Scholar 

  35. M. He, F. Li, J. Cai, and B. Chen, An Indentation Technique for Estimating the Energy Density as Fracture Toughness With Berkovich Indenter for Ductile Bulk Materials, Theor. Appl. Fract. Mech., 2011, 56(2), p 104

    Article  Google Scholar 

  36. S. Semiatin and T. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow During Hot Working of Ti-6Al-4V with a Transformed Microstructure, Acta Mater., 2001, 49(17), p 3565

    Article  Google Scholar 

  37. M. Jovanović, S. Tadić, S. Zec, Z. Mišković, and I. Bobić, The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti-6Al-4V Alloy, Mater. Des., 2006, 27(3), p 192

    Article  Google Scholar 

  38. S.S. da Rocha, G.L. Adabo, L.G. Vaz, and G.E.P. Henriques, Effect of Thermal Treatments on Tensile Strength of Commercially Cast Pure Titanium and Ti-6Al-4V Alloys, J. Mater. Sci. Mater. Med., 2005, 16(8), p 759

    Article  Google Scholar 

  39. L.W. Meyer, L. Krüger, K. Sommer, T. Halle, and M. Hockauf, Dynamic Strength and Failure Behavior of Titanium Alloy Ti-6Al-4V for a Variation of Heat Treatments, Mech. Time-Depend. Mater., 2008, 12(3), p 237

    Article  Google Scholar 

Download references

Acknowledgment

The authors are very grateful for the support received from the National Natural Science Foundation of China (Grant No. 51275414), the Aeronautical Science Foundation of China (Grant No. 2011ZE53059), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. Z2015064), and the Province Natural Science Foundation of Shaanxi (Grant No. 2015JM5204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuguo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, F., Li, J. et al. Effect of Heat Treatment on the Microstructure and Micro-mechanical Behavior of Quenched Ti-6Al-4V Alloy. J. of Materi Eng and Perform 24, 3761–3772 (2015). https://doi.org/10.1007/s11665-015-1682-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1682-z

Keywords

Navigation