Skip to main content
Log in

Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Agglomerated TiB2 particle and network-like structure-reinforced titanium matrix composite coatings were prepared by laser cladding of the Ni + TiB2 + Ti preplaced powders on Ti-6Al-4V alloy. The network-like structure mainly consisted of NiTi and Ni3Ti. Through the experiment, it was found that the size of agglomerated particle gradually decreased with the increase of Ti content, but the number of the network-like structure first increased and then disappeared. In-situ reaction competition mechanism and the formation of network-like structure were discussed. The average micro-hardness gradually decreased with the increase of Ti content, but the average fracture toughness gradually increased. Meanwhile, the wear resistance of the coatings is higher than that of the substrate, but the wear loss of the coatings is gradually increased with the increase of Ti content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Weng, H.J. Yu, C.Z. Chen, and J.J. Dai, Microstructures and Wear Properties of Laser Cladding Co-Based Composite Coatings on Ti-6Al-4V, Mater. Des., 2015, 80, p 174–181

    Article  Google Scholar 

  2. B.A. Obadele, A. Andrews, M.T. Mathew, P.A. Olubambi, and S. Pityana, Improving the Tribocorrosion Resistance of Ti6Al4V Surface by Laser Surface Cladding with TiNiZrO2 Composite Coating, Appl. Surf. Sci., 2015, 345, p 99–108

    Article  Google Scholar 

  3. W.L. Wu, Dissolution Precipitation Mechanism of TiC/Ti Composite Layer Produced by Laser Cladding, Mater. Sci. Technol., 2010, 26, p 367–370

    Article  Google Scholar 

  4. D. Galvan, V. Ocelı´k, Y. Pei, B.J. Kooi, J.T.M.D. Hosson, and E. Ramous, Microstructure and Properties of TiB/Ti-6Al-4V Coatings Produced with Laser Treatments, J. Mater. Eng. Perform., 2004, 13, p 406–412

    Article  Google Scholar 

  5. M. Das, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, and K.T.S. Sampath, In Situ Synthesized TiB-TiN Reinforced Ti6Al4V Alloy Composite Coatings: Microstructure, Tribological and In Vitro Biocompatibility, J. Mech. Behav. Biomed. Mater., 2014, 29, p 259–271

    Article  Google Scholar 

  6. Y. Wu, A.H. Wang, Z. Zhang, H.B. Xia, and Y.N. Wang, Microstructure, Wear Resistance and Cell Proliferation Ability of In Situ Synthesized Ti-B Coating Produced by Laser Alloying, Opt. Laser Technol., 2015, 67, p 176–182

    Article  Google Scholar 

  7. J. Li, X. Luo, and G.J. Li, Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding, Wear, 2014, 310, p 72–82

    Article  Google Scholar 

  8. V. Ocelik, D. Matthews, and J.T.M. de Hosson, Sliding Wear Resistance of Metal Matrix Composite Layers Prepared by High Power Laser, Surf. Coat. Technol., 2005, 197, p 303–315

    Article  Google Scholar 

  9. B.S. Li, J.L. Shang, J.J. Guo, and H.Z. Fu, In Situ Observation of Fracture Behavior of In Situ TiBw/Ti Composites, Mat. Sci. Eng. A, 2004, 383, p 316–322

    Article  Google Scholar 

  10. P.Y. Xu, Y.C. Liu, P. Yi, C.F. Fan, and C.K. Li, Research on Variation and Stress Status of Graphite in Laser Cladding Process of Grey Cast Iron, Mater. Sci. Technol., 2014, 30, p 1728–1734

    Article  Google Scholar 

  11. V. Sinha, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, Superplastic Behavior of Ti-6Al-4V-0.1B Alloy, Mater. Sci. Eng. A, 2012, 539, p 7–12

    Article  Google Scholar 

  12. X.H. Wang, S.Y. Qu, B.S. Du, Z.D. Zou, and X.R. Wang, Effect of Molybdenum on Microstructure and Wear Properties of Fe-Ti-Mo-C Laser Clad Coatings, Mater. Sci. Technol., 2011, 27, p 1222–1228

    Article  Google Scholar 

  13. L.J. Huang, L. Geng, and H.X. Peng, In Situ (TiBw + TiCp)/Ti6Al4V Composites with a Network Reinforcement Distribution, Mater. Sci. Eng. A, 2010, 527, p 6723–6727

    Article  Google Scholar 

  14. V.V. Patel, A. El-Desouky, J.E. Garay, and K. Morsi, Pressure-Less and Current-Activated Pressure-Assisted Sintering of Titanium Dual Matrix Composites: Effect of Reinforcement Particle Size, Mater. Sci. Eng. A, 2009, 507, p 161–166

    Article  Google Scholar 

  15. L.J. Huang, L. Geng, H.X. Peng, and J. Zhang, Room Temperature Tensile Fracture Characteristics of In Situ TiBw/Ti6Al4V Composites with a Quasi-Continuous Network Architecture, Scr. Mater., 2011, 64, p 844–847

    Article  Google Scholar 

  16. L.J. Huang, L. Geng, H.X. Peng, K. Balasubramaniam, and G.S. Wang, Effects of Sintering Parameters on the Microstructure and Tensile Properties of In Situ TiBw/Ti6Al4V Composites with a Novel Network Architecture, Mater. Des., 2011, 32, p 3347–3353

    Article  Google Scholar 

  17. B.S. Yilbas, C. Karatas, H. Karakoc, A.B.J. Abdul, S. Khan, and N. Al-Aqeeli, Laser Surface Treatment of Aluminum Based Composite Mixed with B4C Particles, Opt. Laser Technol., 2015, 66, p 129–137

    Article  Google Scholar 

  18. H.M. Wang, F. Cao, L.X. Cai, H.B. Tang, and L.Y. Zhang, Microstructure and Tribological Properties of Laser Clad Ti2Ni3Si/NiTi Intermetallic Coatings, Acta Mater., 2003, 51, p 6319–6327

    Article  Google Scholar 

  19. J.H. Li, F.G. Li, X.K. Ma, Q.R. Wang, J.Z. Dong, and Z.W. Yuan, A Strain-Dependent Ductile Damage Model and its Application in the Derivation of Fracture Toughness by Micro-indentation, Mater. Des., 2015, 67, p 623–630

    Article  Google Scholar 

  20. I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, U. Figueroa-López, M. Flores-Jiménez, and O. Meydanoglu, The Boriding Process in CoCrMo Alloy: Fracture Toughness in Cobalt Boride Coatings, Surf. Coat. Technol., 2014, 260, p 362–368

    Article  Google Scholar 

  21. X. Wang, C.J. Wang, and A. Atkinson, Interface Fracture Toughness in Thermal Barrier Coatings by Cross-Sectional Indentation, Acta Mater., 2012, 60, p 6152–6163

    Article  Google Scholar 

  22. C.J. Zhang, F.T. Kong, S.L. Xiao, H.Z. Niu, L.J. Xu, and Y.Y. Chen, Evolution of Microstructural Characteristic and Tensile Properties During Preparation of TiB/Ti Composite Sheet, Mater. Des., 2012, 36, p 505–510

    Article  Google Scholar 

  23. D.L. Ye and J.H. Hu, Utility Inorganic Materials Thermodynamics Data Handbook, 2nd ed., Metallurgy Industry Press, Beijing, 2002

    Google Scholar 

  24. Y.F. Yang and Q.C. Jiang, Reaction Behaviour, Microstructure and Mechanical Properties of TiC-TiB2/Ni Composite Fabricated by Pressure Assisted Self-Propagating High-Temperature Synthesis in Air and Vacuum, Mater. Des., 2013, 49, p 123–129

    Article  Google Scholar 

  25. L. Huang, H.Y. Wang, Q. Li, S.Q. Yin, and Q.C. Jiang, Effect of Ni Content on the Products of Ni-Ti-B System via Self-Propagating High-Temperature Synthesis Reaction, J. Alloy. Compd., 2008, 457, p 286–291

    Article  Google Scholar 

  26. A.A. Shokati, N. Parvin, and M. Shokati, Combustion Synthesis of NiAl Matrix Composite Powder Reinforced by TiB2 and TiN Particulates from Ni-Al-Ti-BN Reaction System, J. Alloy. Compd., 2014, 585, p 637–643

    Article  Google Scholar 

  27. L.J. Huang, L. Geng, and H.X. Peng, Microstructurally in Homogeneous Composites: Is a Homogeneous Reinforcement Distribution Optimal?, Prog. Mater. Sci., 2015, 71, p 93–168

    Article  Google Scholar 

  28. B. Todorović, T. Jokić, Z. Rakočević, Z. Marković, B. Gaković, and T. Nenadović, The Effect of Rapid Thermal Annealing on Structural and Electrical Properties of TiB2 Thin Films, Thin Solid Films, 1997, 300, p 272–277

    Article  Google Scholar 

  29. R. Jendrzejewski, G. Śliwiński, M. Krawczuk, and W. Ostachowicz, Temperature and Stress Fields Induced During Laser Cladding, Comput. Struct., 2004, 82, p 653–658

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under grant (51274016, 51275006) and Scientific Plan Item of Beijing Education Committee under grant (PXM2015-014204-500170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghua Lin or Yongping Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Lei, Y., Fu, H. et al. Microstructure and Properties of (TiB2 + NiTi)/Ti Composite Coating Fabricated by Laser Cladding. J. of Materi Eng and Perform 24, 3717–3725 (2015). https://doi.org/10.1007/s11665-015-1668-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1668-x

Keywords

Navigation