Skip to main content
Log in

Mathematical Modeling for Microstructural Evolution in Multi-pass Hot Compression of Q345E Alloy Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deformation process and inter-pass time of hot working are always accompanied by complicated microstructural evolution. As a kind of low alloy steels with good malleability, Q345E steel is widely used. The specimens of Q345E steel were heated to 1123, 1223, 1323, 1423, and 1523 K and held for 0, 120, 240, 360, and 480 s, respectively, on Gleeble-3500 thermo-mechanical simulator to develop the austenite grain growth equation of Q345E steel. In addition, the ‘single-pass hot compression tests,’ ‘double-pass hot compression tests,’ and ‘single-pass hot compression and thermal insulation tests’ at temperature from 1123 to 1423 K with the strain rate from 0.01 to 10 s−1 were carried out on Gleeble-3500 thermo-mechanical simulator to investigate the behavior of dynamic recrystallization (DRX), meta-dynamic recrystallization (MDRX), and static recrystallization (SRX), and to establish the mathematical equations of DRX, MDRX, and SRX, which can predict the volume fraction of recrystallization and grain size after recrystallization. The result of error analysis and a 2D finite element simulation model during hot upsetting verifies that the experimental data agree well with the predicted values calculated by these mathematical equations, which indicates that the established mathematical equations can be applied to accurately predict the microstructural evolution of Q345E steel during hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Lin and T.A. Dean, Modelling of Microstructure Evolution in Hot Forming Using Unified Constitutive Equations, J. Mater. Process. Technol., 2005, 167, p 354–362

    Article  Google Scholar 

  2. W.X. Wu, L. Jin, F.H. Wang, J. Sun, Z.Y. Zhang, W.J. Ding, and J. Dong, Microstructure and Texture Evolution During Hot Rolling and Subsequent Annealing of Mg-1Gd Alloy, Mater. Sci. Eng. A, 2013, 582, p 194–202

    Article  Google Scholar 

  3. N. Bontcheva and G. Petzov, Total Simulation Model of the Thermo-Mechanical Process in Shape Rolling of Steel Rods, Comput. Mater. Sci., 2005, 34, p 377–388

    Article  Google Scholar 

  4. Y.C. Lin, Y. Ding, M.S. Chen, and J. Deng, A New Phenomenological Constitutive Model for Hot Tensile Deformation Behaviors of a Typical Al-Cu-Mg Alloy, Mater. Des., 2013, 52, p 118–127

    Article  Google Scholar 

  5. B. Zou, Z.Q. Chen, C.H. Liu, and J.H. Chen, Microstructure Evolution of Heavily Deformed AA5083 Al-Mg Alloy Studied by Positron Annihilation Spectroscopy, Appl. Surf. Sci., 2014, 296, p 154–157

    Article  Google Scholar 

  6. H. Hallberg, B. Svendsen, T. Kayser, and M. Ristinmaa, Microstructure Evolution During Dynamic Discontinuous Recrystallization in Particle-Containing Cu, Comput. Mater. Sci., 2014, 84, p 327–338

    Article  Google Scholar 

  7. Y. Liu and J. Lin, Modelling of Microstructural Evolution in Multipass Hot Rolling, J. Mater. Process. Technol., 2003, 143-144, p 723–728

    Article  Google Scholar 

  8. G.Z. Quan, A. Mao, G.C. Luo, J.T. Liang, D.S. Wu, and J. Zhou, Constitutive Modeling for the Dynamic Recrystallization Kinetics of as-Extruded 3Cr20Ni10W2 Heat-Resistant Alloy Based on Stress-Strain Data, Mater. Des., 2013, 52, p 98–107

    Article  Google Scholar 

  9. Y. Xu, L.X. Hu, and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269

    Article  Google Scholar 

  10. F. Yin, L. Hua, H.J. Mao, X.H. Han, D.S. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel During Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573

    Article  Google Scholar 

  11. P. Bernard, S. Bag, K. Huang, and R.E. Logé, A Two-Site Mean Field Model of Discontinuous Dynamic Recrystallization, Mater. Sci. Eng. A, 2011, 528, p 7357–7367

    Article  Google Scholar 

  12. H.Q. Liang, H.Z. Guo, Y.Q. Ning, X.N. Peng, C. Qin, Z.F. Shi, and Y. Nan, Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Des., 2014, 63, p 798–804

    Article  Google Scholar 

  13. M. Toloui and S. Serajzadeh, Modelling Recrystallization Kinetics During Hot Rolling of AA5083, J. Mater. Process. Technol., 2007, 184, p 345–353

    Article  Google Scholar 

  14. Q.Y. Sha, G.Y. Li, and D.H. Li, Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel, J. Mater. Eng. Perform., 2013, 22, p 3626–3630

    Article  Google Scholar 

  15. A.M. Elwazri, P. Wanjara, and S. Yue, Metadynamic and Static Recrystallization of Hypereutectoid Steel, ISIJ Int., 2003, 43(7), p 1080–1088

    Article  Google Scholar 

  16. Y. Fu and H. Yu, Application of Mathematical Modeling in Two-Stage Rolling of Hot Rolled Wire Rods, J. Mater. Process. Technol., 2014, 214, p 1962–1970

    Article  Google Scholar 

  17. G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite Grain Refinement and Isothermal Growth Behavior in a Low Carbon Vanadium Microalloyed Steel, J. Iron. Steel Res. Int., 2014, 21(8), p 757–764

    Article  Google Scholar 

  18. B. Zhu, Y.S. Zhang, C. Wang, P.X. Liu, and W.K. Liang, Modeling of the Austenitization of Ultra-High Strength Steel with Cellular Automation Method, Metall. Mater. Trans. A, 2014, 45A, p 3161–3171

    Article  Google Scholar 

  19. A.H. Seikh, M.S. Soliman, A. AlMajid, K. Alhajeri, and W. Alshalfan, Austenite Grain Growth Kinetics in API X65 and X70 Line-Pipe Steels During Isothermal Heating, Adv. Mater. Sci. Eng., 2014, 2014, p 1–8.

    Article  Google Scholar 

  20. F.L. Sui, Y. Zuo, X.H. Liu, and L.Q. Chen, Microstructure Analysis on IN 718 Alloy Round Rod by FEM in the Hot Continuous Rolling Process, Appl. Math. Model., 2013, 37, p 8776–8784

    Article  Google Scholar 

  21. C. Wu, H. Yang, and H.W. Li, Modeling of Discontinuous Dynamic Recrystallization of a Near-a Titanium Alloy IMI834 During Isothermal Hot Compression by Combining a Cellular Automaton Model with a Crystal Plasticity Finite Element Method, Comput. Mater. Sci., 2013, 79, p 944–959

    Article  Google Scholar 

  22. C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13(3-4), p 187–194

    Article  Google Scholar 

  23. J.T. Yeom, C.S. Lee, J.H. Kim, and N.K. Park, Finite-Element Analysis of Microstructure Evolution in the Cogging of an Alloy 718 Ingot, Mater. Sci. Eng. A, 2007, 449-451, p 722–726

    Article  Google Scholar 

  24. C.P. Hong and J.J. Park, Design of Pass Schedule for Austenite Grain Refinement in Plate Rolling of a Plain Carbon Steel, J. Mater. Process. Technol., 2003, 143-144, p 758–763

    Article  Google Scholar 

  25. D. Priadi, A.M. Napitupulu, and E.S. Siradj, Austenite Grain Growth Calculation of 0.028% Nb Steel, J. Min. Metall. Sect. B, 2011, 47(2), p 199–209

    Article  Google Scholar 

  26. P.H. Romero, I. Lonardelli, D. Cogswell, and H.K.D.H. Bhadeshia, Austenite Grain Growth in a Nuclear Pressure Vessel Steel, Mater. Sci. Eng. A, 2013, 567, p 72–79

    Article  Google Scholar 

  27. C.X. Yue, L.W. Zhang, S.L. Liao et al., Kinetic Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19(1), p 112–115

    Article  Google Scholar 

  28. Y.P. Li, T. Suzuki, N. Tang, Y. Koizumi, and A. Chiba, Microstructure Evolution of SUS303 Free-Cutting Steel During Hot Compression Process, Mater. Sci. Eng. A, 2013, 583, p 161–168

    Article  Google Scholar 

  29. C.J. Wang, H. Feng, W.J. Zheng, and Q.L. Yong, Dynamic Recrystallization Behavior and Microstructure Evolution of AISI, 304 N Stainless Steel, J. Iron. Steel Res. Int., 2013, 20(10), p 107–112

    Article  Google Scholar 

  30. G.L. Ji, Q. Li, and L. Li, The Kinetics of Dynamic Recrystallization of Cu-0.4 Mg Alloy, Mater. Sci. Eng. A, 2013, 586, p 197–203

    Article  Google Scholar 

  31. G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, T.W. Ku, and W.J. Song, Constitutive Modeling for the Dynamic Recrystallization Evolution of AZ80 Magnesium Alloy Based on Stress-Strain Data, Mater. Sci. Eng. A, 2011, 528, p 8051–8059

    Article  Google Scholar 

  32. S.D. Gu, L.W. Zhang, J.H. Ruan, P.Z. Zhou, and Y. Zhen, Constitutive Modeling of Dynamic Recrystallization Behavior and Processing Map of 38MnVS6 Non-quenched Steel, J. Mater. Eng. Perform., 2014, 23, p 1062–1068

    Article  Google Scholar 

  33. C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao, Mathematical Models for Predicting the Austenite Grain size in Hot Working of GCr15 Steel, Comput. Mater. Sci., 2009, 45, p 462–466

    Article  Google Scholar 

  34. J. Liu, Z. Cui, and L. Ruan, A New Kinetics Model of Dynamic Recrystallization for Magnesium Alloy AZ31B, Mater. Sci. Eng. A, 2011, 529, p 300–310

    Article  Google Scholar 

  35. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577

    Article  Google Scholar 

  36. M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of low carbon alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392

    Article  Google Scholar 

  37. H.L. Wei, G.Q. Liu, X. Xiao, and M.H. Zhang, Dynamic Recrystallization Behavior of a Medium Carbon Vanadium Microalloyed Steel, Mater. Sci. Eng. A, 2013, 573, p 215–221

    Article  Google Scholar 

  38. Y.G. Liu, M.Q. Li, and J. Luo, The Modelling of Dynamic Recrystallization in the Isothermal Compression of 300M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8

    Article  Google Scholar 

  39. M.H. Maghsoudi, Z.A. Hanzaki, P. Changizian, and A. Marandi, Metadynamic Recrystallization Behavior of AZ61 Magnesium Alloy, Mater. Des., 2014, 57, p 487–493

    Article  Google Scholar 

  40. H.Y. Wu, L.X. Du, Z.R. Ai, and X.H. Liu, Static Recrystallization and Precipitation Behavior of a Weathering Steel Microalloyed with Vanadium, J. Mater. Sci. Technol., 2013, 29(12), p 1197–1203

    Article  Google Scholar 

  41. L. Cheng, H. Chang, B. Tang, H.C. Kou, and J.S. Li, Characteristics of Metadynamic Recrystallization of a High Nb Containing TiAl Alloy, Mater. Lett., 2013, 92, p 430–432

    Article  Google Scholar 

  42. Y.G. Liu, J. Liu, M.Q. Li, and H. Lin, The Study on Kinetics of Static Recrystallization in the Two-Stage Isothermal Compression of 300M Steel, Comput. Mater. Sci., 2014, 84, p 115–121

    Article  Google Scholar 

  43. S.Q. Bao, G. Zhao, C.B. Yu, Q.M. Chang, C.L. Ye, and X.P. Mao, Recrystallization Behavior of a Nb-microalloyed Steel During Hot Compression, Appl. Math. Model., 2011, 35, p 3268–3275

    Article  Google Scholar 

  44. Q.Y. Sha, D.H. Li, and G.Y. Li, Dynamic and Static Recrystallization Behaviour of Coarse-Grained Austenite in a Nb-V-Ti Microalloyed-Steel, J. Iron. Steel Res. Int., 2014, 21(2), p 233–239

    Article  Google Scholar 

  45. Y.C. Lin, M.S. Chen, and J. Zhong, Study of Static Recrystallization Kinetics in a Low Alloy Steel, Comput. Mater. Sci., 2008, 44, p 316–321

    Article  Google Scholar 

  46. Y.C. Lin and M.S. Chen, Study of Microstructural Evolution During Static Recrystallization in a Low Alloy Steel, J. Mater. Sci., 2009, 44, p 835–842

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the State Key Program of National Natural Science Foundation of China (No. 51135007), the Innovative Research Team Development Program of Ministry of Education of China (No. IRT13087), and the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. 2012-P08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Qian.

Appendix

Appendix

See Table 6.

Table 6 Descriptions of the Variables Used in the Mathematical Equations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, D., Peng, Y. Mathematical Modeling for Microstructural Evolution in Multi-pass Hot Compression of Q345E Alloy Steel. J. of Materi Eng and Perform 24, 1906–1917 (2015). https://doi.org/10.1007/s11665-015-1473-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1473-6

Keywords

Navigation