Skip to main content
Log in

The Influence of Fe Content on the Mechanical Properties of NiAl Coatings Processed In-Situ

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

NiAl Plasma Transferred Arc coatings can be processed by in-situ synthesis of the aluminide during the deposition of mixtures of Ni and Al powders. This procedure allows to deposit compositions that otherwise would exhibit low weldability. The strong metallurgical bond of coatings involves the formation of a weld pool. It is therefore expected for the composition of the processed coatings to be influenced both by the deposited and base material, besides processing parameters. This study analyzed the impact of the deposition current on the point defect structure in the B2NiAl-ordered structure and consequently on the coating hardness and indentation modulus. Mixtures of 65 at.%Ni and 35 at.%Al were prepared and deposited on carbon steel and stainless steel plates. Deposition current ranging from 70 to 150 A was used to induce different Fe content in the coatings. Results showed that increasing deposition current increased dilution with substrate but contrary to observations on metallic coatings, an increase of hardness and indentation modulus was measured. The hypothesis that the measured behavior is related to the point defect structure of the ordered phase, B2-NiAl, is put forward. The Fe content determined the density and type of point defects: vacancies, anti-sites Al or Ni. A better understanding on the mechanisms controlling the properties of the aluminide PTA coatings with increasing deposition current is achieved: hardness exhibiting a direct correlation with the point defect structure and the indentation modulus a strong dependence on the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.H. Jones and P. Roffey, The Improvement of Hard Facing Coatings for Ground Engaging Applications by the Addition of Tungsten Carbide, Wear, 2009, 267, p 925–933. doi:10.1016/j.wear.2009.01.006

    Article  Google Scholar 

  2. F.J.R. Cangue and A.S.C.M. D’Oliveira, Influence of Al on the Microstructure and Carburization Performance of a N-Based Alloy Coating, Mater. Chem. Phys., 2010, 120, p 552–557. doi:10.1016/j.matchemphys.2009.11.046

    Article  Google Scholar 

  3. A.E. Yaedu and A.S.C.M. D’Oliveira, Co Based Alloy PTA Hardfacing with Different Dilution Levels, Mater. Sci. Technol., 2005, 21, p 459–466. doi:10.1179/174328405X36511

    Article  Google Scholar 

  4. V.B. Almeida, E.H. Takano, I. Mazzaro, and A.S.C.M. D’Oliveira, Evaluation of Ni-Al Coatings Processed by Plasma Transferred Arc, Surf. Eng., 2011, 27, p 266–271. doi:10.1179/026708410X12550773057866

    Google Scholar 

  5. A.S.C.M. D’Oliveira, E.H. Takano, L. Belloti, and R.P. Cardoso, Solidification of PTA Aluminide Coatings, Int. J. Mater. Res., 2012, 9, p 1159–1162. doi:10.3139/146.110773

    Article  Google Scholar 

  6. L.M. Pike, Y.A. Chang, and C.T. Liu, Point Defect Concentrations and Hardening in Binary B2 Intermetallics, Acta Mater., 1997, 45, p 3709–3719. doi:10.1016/S1359-6454(97)00028-1

    Article  Google Scholar 

  7. I.M. Anderson, A.J. Duncan, and J. Bentley, Site-Distributions of Fe Alloying Additions to B2-Ordered NiAl, Intermetallics, 1999, 7, p 1017–1024. doi:10.1016/S0966-9795(99)00013-8

    Article  Google Scholar 

  8. L.M. Pike, Y.A. Chang, and C.T. Liu, Solid-Solution Hardening and Softening by Fe Additions to NiAl, Intermetallics, 1997, 5, p 601–608. doi:10.1016/S0966-9795(97)00040-X

    Article  Google Scholar 

  9. International Organization for Standardization. ISO/FDIS 14577-1 Metallic Materials – Instrumented Indention Test for Hardness and Materials Parameters, 2002, p 1–25.

  10. American Society for Metals, Properties and Selection: Irons, Steels, and High-Performance Alloys, Metals Handbook, vol. 1, 1994, p 2521.

  11. K.R.A. Ziebeck and K.U. Neumann, Alloys and Compounds of d-Elements with Main Group Elements, Part 2, Landolt-Börnstein: Group III, Condens. Matter, 2001, 32, p 69–72. doi:10.1007/b59342

    Google Scholar 

  12. R. Hu, H.N. Su, and P. Nash, Enthalpies of Formation and Lattice Parameters of B2 Phases in Al-Ni-X Systems P, Pure Appl. Chem., 2007, 9, p 1653–1673. doi:10.1351/pac200779101653

    Google Scholar 

  13. J.D. Cotton, R.D. Noebe, and M.J. Kaufman, The Effects of Chromium on NiAl Intermetallic Alloys: Part I, Microstruct. Mech. Proper. Intermet., 1993, 1, p 3–20. doi:10.1016/0966-9795(93)90016-O

    Google Scholar 

  14. C.R. Kao, L.M. Pike, S.L. Chen, and Y.A. Chang, Site Preference of Substitutional Additions to Triple-Defect B2 Intermetallic Compounds, Intermetallics, 1994, 2, p 235–247. doi:10.1016/0966-9795(94)90010-8

    Article  Google Scholar 

  15. G.H. Bozzolo, R.D. Noebe, and C. Amador, Site Occupancy of Ternary Additions to B2 Alloys, Intermetallics, 2002, 10, p 149–159. doi:10.1016/S0966-9795(01)00124-8

    Article  Google Scholar 

  16. C.R.A. Silva, Jr, and G. Pintaude, Uncertainty Analysis on the Wear Coefficient of Archard Model, Tribol. Int., 2008, 41, p 473–481. doi:10.1016/j.triboint.2007.10.007

    Article  Google Scholar 

  17. V. Ramasubbu, G. Chakraborty, S.K. Albert, and A.K. Bhaduri, Effect of Dilution on GTAW Colmonoy 6 (AWS NiCr-C) Hardface Deposit Made on 316LN Stainless Steel, Mater. Sci. Technol., 2011, 27, p 573–580. doi:10.1179/026708309X12526555493431

    Article  Google Scholar 

  18. A. Albiter, E. Bedolla, and R. Perez, Microstructure Characterization of the NiAl Intermetallic Compound with Fe, Ga and Mo Additions Obtained by Mechanical Alloying, Mater. Sci. Eng. A, 2002, 328, p 80–86. doi:10.1016/S0921-5093(01)01664-1

    Article  Google Scholar 

  19. S.C. Deevi, V.K. Sikka, and C.T. Liu, Processing, Properties, and Applications of Nickel and Iron Aluminides, Progress Mater. Sci., 1997, 2, p 177–192. doi:10.1016/0966-9795(95)00056-9

    Article  Google Scholar 

  20. G.P. Cammarota and A.J. Casagrande, Effect of Ternary Additions of Iron on Microstructure and Microhardness of the Intermetallic NiAl in Reactive Sintering, Alloys Compd., 2004, 381, p 208–214. doi:10.1016/j.jallcom.2004.04.077

    Article  Google Scholar 

  21. G. Frommeyer, R. Rablbauer, and H.J. Schafer, Elastic Properties of B2-Ordered NiAl and NiAl-X (Cr, Mo, W) alloys, Intermetallics, 2010, 18, p 299–305. doi:10.1016/j.intermet.2009.07.026

    Article  Google Scholar 

  22. C. Li, Y.L. Chin, and P. Wu, Correlation Between Bulk Modulus of Ternary Intermetallic Compounds and Atomic Properties of Their Constituent Elements, Intermetallics, 2004, 12, p 103–109. doi:10.1016/j.intermet.2003.08.003

    Article  Google Scholar 

  23. A.R. Miedema, P.F. De Châtel, and R. De Boer, Cohesion in Alloys: Fundamentals of a Semi-Empirical Model, Physica B, 1980, 100, p 1–28. doi:10.1016/0378-4363(80)90054-6

    Article  Google Scholar 

  24. X.Q. Chen, H. Niu, D. Li, and Y. Li, Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses, Intermetallics, 2011, 19, p 1275–1281. doi:10.1016/j.intermet.2011.03.026

    Article  Google Scholar 

  25. J.E. Zorzi and C.A. Perottoni, Estimating Young’s Modulus and Poisson’s Ratio by Instrumented Indentation Test, Mater. Sci. Eng. A, 2013, 574, p 25–30. doi:10.1016/j.msea.2013.03.008

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge CNPq and CAPES for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. C. M. d’Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunetti, C., Pintaude, G. & d’Oliveira, A.S.C.M. The Influence of Fe Content on the Mechanical Properties of NiAl Coatings Processed In-Situ. J. of Materi Eng and Perform 23, 3934–3940 (2014). https://doi.org/10.1007/s11665-014-1203-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1203-5

Keywords

Navigation