Skip to main content
Log in

Hardness of FRHC-Cu Determined by Statistical Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A statistical indentation method has been employed to study the hardness value of fire-refined high conductivity copper, using nanoindentation technique. The Joslin and Oliver approach was used with the aim to separate the hardness (H) influence of copper matrix, from that of inclusions and grain boundaries. This approach relies on a large array of imprints (around 400 indentations), performed at 150 nm of indentation depth. A statistical study using a cumulative distribution function fit and Gaussian simulated distributions, exhibits that H for each phase can be extracted when the indentation depth is much lower than the size of the secondary phases. It is found that the thermal treatment produces a hardness increase, due to the partly re-dissolution of the inclusions (mainly Pb and Sn) in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Esparducer, M.A. Fernandez, M. Segarra, J.M. Chimenos, and F. Espiell, Characterization of Fire-Refined Copper Recycled from Scrap, J. Mater. Sci., 1999, 34, p 4239–4244

    Article  Google Scholar 

  2. http://www.lfl.es/esp/default.asp. Accessed on 27 Dec 2012

  3. http://www.copper.org/. Accessed on 27 Dec 2012

  4. M. Martínez, A.I. Fernández, M. Segarra, H. Xuriguera, F. Espiell, and N. Ferrer, Comparative Study of Electrical and Mechanical Properties of Fire-Refined and Electrolytically Refined Cold-Drawn Copper Wires, J. Mater. Sci., 2007, 42, p 7745–7749

    Article  Google Scholar 

  5. L.E. Murr, Correlating Impact Related Residual Microstructures Through 2D Computer Simulations and Microindentation Hardness Mapping: Review, Mat. Sci. Technol., 2012, 28, p 1108–1126

    Article  Google Scholar 

  6. Armstrong, R.W., Elban, W.L., and Walley, S.M. Elastic, Plastic, Cracking Aspects of the Hardness of Materials. Int. J. Mod. Phys. B., 2013, 27(8), p 1330004 (79 pp). doi:10.1142/S0217979213300041

  7. M.F. Doerner and W.D. Nix, A Method for Interpreting the Data from Depth-Sensing Indentation Instruments, J. Mater. Res., 1986, 1, p 601–609

    Article  Google Scholar 

  8. G.M. Pharr and W.C. Oliver, Measurement of Thin Film Mechanical Properties Using Nanoindentation, MRS Bull., 1992, 17, p 28–33

    Google Scholar 

  9. M.F. Doerner, D.S. Gardner, and W.D. Nix, Plastic Properties of Thin Films on Substrates as Measured by Submicron Indentation Hardness and Substrate Curvatures Techniques, J. Mater. Res., 1986, 1, p 845–851

    Article  Google Scholar 

  10. D. Shuman, A. Costa, and M. Andrade, Calculating the Elastic Modulus from Nanoindentation and Microindentation Reload Curves, Mater. Charact., 2007, 58(4), p 380–389

    Article  Google Scholar 

  11. M. Magnuson, M. Mattesini, C. Li, C. Höglund, M. Beckers, L. Hultman, and O. Eriksson, Bonding Mechanism in the Nitrides Ti2AlN and TiN: An Experimental and Theoretical Investigation, Phys. Rev. B, 2007, 76, p 195127/1–195127/9

    Article  Google Scholar 

  12. K.W. McElhaney, J.J. Vlassak, and W.D. Nix, Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sending Indentation Experiments, J. Mater. Res., 1998, 13, p 1300–1306

    Article  Google Scholar 

  13. W.D. Callister, Jr., Introduccion a la Ciencia e Ingenieria de los Materiales, Ed. Reverté S.A, Barcelona, 2005

    Google Scholar 

  14. A. Esparducer, M. Segarra, F. Espiell, M. Garcia, and O. Guixà, Effects of Pre-heating Treatment on the Annealing Behaviour of Cold-Drawn Fire-Refined Coppers, J. Mater. Sci., 2001, 36, p 241–245

    Article  Google Scholar 

  15. D.L. Joslin and W.C. Oliver, A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests, J. Mater. Res., 1990, 5, p 123–126

    Article  Google Scholar 

  16. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583

    Article  Google Scholar 

  17. A. Esparducer, M. Segarra, F. Espiell, M. Garcia, and O. Guixà, Effects of Pre-heating Treatment on the Annealing Behaviour of Cold-Drawn Fire-Refined Coppers, J. Mater. Sci., 2001, 36, p 241–245

    Article  Google Scholar 

  18. J.S. Field and M.V. Swain, A Simple Predictive Model for Spherical Indentation, J. Mater. Res., 1993, 8, p 297–306

    Article  Google Scholar 

  19. W.C. Oliver and G.M. Pharr, Review: Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20

    Article  Google Scholar 

  20. G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. & Eng. A., 1998, 253, p 151–159

    Article  Google Scholar 

  21. J.L. Hay and G.M. Pharr, Instrumented Indentation Testing, ASM Handbook, 2000, 8, p 232–243

    Google Scholar 

  22. S. Suresh, T.G. Nieh, and B.W. Choi, Nano-indentation of Copper Thin Films on Silicon Substrates, Scr. Mater., 1999, 41, p 951–957

    Article  Google Scholar 

  23. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and Continuous Deformation During Nanoindentation of Thin Films, Acta Mater., 2000, 48, p 2277–2295

    Article  Google Scholar 

  24. J. Chen, W. Wang, L.H. Qian, and K. Lu, Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scr. Mater., 2003, 49, pp. 645-650; 48, pp. 2277-2295

    Google Scholar 

  25. G. Constantinides, F.J. Ulm, and K. Van Vliet, On the use of nanoindentation for cementitious materials, Mater. Struct., 2003, 36, p 191–196

    Google Scholar 

  26. G. Constantinides and F.J. Ulm, The nanogranular nature of C-S-H, J. Mech. Phys. Sol., 2006, 55, p 679–690

    Google Scholar 

  27. G. Constantinides, K.S. Ravi Chandran, F.J. Ulm, and K. Van Vliet, Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng., A, 2006, 430, p 189–202

    Article  Google Scholar 

  28. N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping The Mechanical Properties of Complex Surfaces, J. Mater. Res., 2009, 24(3), p 679–690

    Article  Google Scholar 

  29. V. Canseco, J.J. Roa, E. Rayón, A.I. Fernandez, and E. Palomo, Mechanical Characterization at Nanometric Scale for Heterogeneous Graphite-Salt Phase Change Materials with a Statistical Approach, Ceram. Inter., 2012, 38(1), p 401–409

    Article  Google Scholar 

  30. F.J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz, Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale, J. Am. Ceram. Soc., 2007, 90, p 2677–2692

    Article  Google Scholar 

  31. Y. Zhang, N.R. Tao, and K. Lu, Mechanical Properties and Rolling Behaviours of Nano-Grained Copper with Embedded Nano-twin Bundles, Acta Mater., 2008, 56, p 2429–2440

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding authors would like to thank La Farga Lacambra Group for the materials supplied. Furthermore, the authors would like to thank the Linguistic Services at the University of Barcelona for linguistic and stylistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Roa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roa, J.J., Martínez, M., Rayón, E. et al. Hardness of FRHC-Cu Determined by Statistical Analysis. J. of Materi Eng and Perform 23, 637–642 (2014). https://doi.org/10.1007/s11665-013-0770-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0770-1

Keywords

Navigation