Skip to main content
Log in

Analysis of In Situ Mechanical Properties of Phases in High-Alloyed White Iron Measured by Grid Nanoindentation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The paper presents an analysis of the in situ mechanical properties (e.g., hardness, elastic modulus, and volume fraction) of phases in high-alloy white iron measured by grid nanoindentation statistically, to reveal the contributions of individual phase properties to the global properties of the material. The in situ mechanical properties of phases measured by grid indentation were validated through targeted indentation. Gaussian and Weibull mixture models were used in analyzing the grid nanoindentation measurements to assess the goodness-of-fit of the indentation data. The nanohardness and indentation modulus measured by grid nanoindentation were directly correlated to the microstructural characteristics of the sample materials. The statistical analysis results were also compared with the mechanical properties and volume fractions obtained using targeted indentation and quantitative metallography based on microstructure analysis to validate the statistical results. The influences of heat treatment on the microstructure, hardness, and elastic modulus of individual phases in the material are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Davis, ASM Specialty Handbook: Cast Irons, ASM International, Materials Park, 1996

    Google Scholar 

  2. C.P. Tabrett, I.R. Sare, and M.R. Ghomashchi, Microstructure-Property Relationships in High Chromium White Iron Alloys, Int. Mater. Rev., 1996, 41(2), p 59–82

    Article  Google Scholar 

  3. Ö.N. Doğan, J.A. Hawk, and G. Laird, II, Solidification Structure and Abrasion Resistance of High Chromium White Irons, Metall. Mater. Trans. A, 1997, 28(6), p 1315–1328

    Article  Google Scholar 

  4. J. Asensio, J.A. Pero-Sanz, and J.I. Verdeja, Microstructure Selection Criteria for Cast Irons with More Than 10 wt.% Chromium for Wear Applications, Mater. Charact., 2002, 49(2), p 83–93

    Article  Google Scholar 

  5. J.R. Gregory and S.M. Spearing, Nanoindentation of Neat and In Situ Polymers in Polymer-Matrix Composites, Compos. Sci. Technol., 2005, 65(3–4), p 595–607

    Article  Google Scholar 

  6. N.X. Randall, M. Vandamme, and F.-J. Ulm, Nanoindentation Analysis as a Two-Dimensional Tool for Mapping the Mechanical Properties of Complex Surfaces, J. Mater. Res., 2011, 24(03), p 679–690

    Article  Google Scholar 

  7. M. Delince, P.J. Jacques, and T. Pardoen, Separation of Size-Dependent Strengthening Contributions in Fine-Grained Dual Phase Steels by Nanoindentation, Acta Mater., 2006, 54(12), p 3395–3404

    Article  Google Scholar 

  8. F.J. Ulm et al., Does Microstructure Matter for Statistical Nanoindentation Techniques?, Cem. Concr. Compos., 2010, 32(1), p 92–99

    Article  Google Scholar 

  9. G. Constantinides et al., Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430(1–2), p 189–202

    Article  Google Scholar 

  10. G. Constantinides and F.-J. Ulm, The Effect of Two Types of C-S-H on the Elasticity of Cement-Based Materials: Results from Nanoindentation and Micromechanical Modeling, Cem. Concr. Res., 2004, 34(1), p 67–80

    Article  Google Scholar 

  11. F.-J. Ulm and Y. Abousleiman, The Nanogranular Nature of Shale, Acta Geotech., 2006, 1(2), p 77–88

    Article  Google Scholar 

  12. K.S. Tai, H.J. Qi, and C. Ortiz, Effect of Mineral Content on the Nanoindentation Properties and Nanoscale Deformation Mechanisms of Bovine Tibial Cortical Bone, J. Mater. Sci. Mater. Med., 2005, 16(10), p 947–959

    Article  Google Scholar 

  13. H. Engqvist and U. Wiklund, Mapping of Mechanical Properties of WC-Co Using Nanoindentation, Tribol. Lett., 2000, 8(2–3), p 147–152

    Article  Google Scholar 

  14. J.L. Cuy et al., Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel, Arch. Oral Biol., 2002, 47(4), p 281–291

    Article  Google Scholar 

  15. G. Balooch et al., Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth, J. Biomech., 2004, 37(8), p 1223–1232

    Article  Google Scholar 

  16. J.J. Roa et al., Hardness of FRHC-Cu Determined by Statistical Analysis, J. Mater. Eng. Perform., 2013, 23(2), p 637–642

    Article  Google Scholar 

  17. P. Kosasu, S. Inthidech, P. Srichareonchai, and Y. Matsubara, Effect of Silicon on Subcritical Heat Treatment Behavior and Wear Resistance of 16 wt.% Cr Cast Iron with 2 wt.% Mo, J. Met. Mater. Miner., 2012, 22(2), p 89–95

    Google Scholar 

  18. J. Němeček, V. Králík, and J. Vondřejc, Micromechanical Analysis of Heterogeneous Structural Materials, Cem. Concr. Compos., 2013, 36, p 85–92

    Article  Google Scholar 

  19. G.F. Vander Voort, ASM International Handbook Committee, Metallography and Microstructures, ASM International, Materials Park, 2004, p 247–259

    Google Scholar 

  20. W.C. Oliver and G.M. Pharr, Nanoindentation in Materials Research: Past, Present, and Future, MRS Bull., 2010, 35(11), p 897–907

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20

    Article  Google Scholar 

  22. I. Hussainova, E. Hamed, and I. Jasiuk, Nanoindentation Testing and Modeling of Chromium-Carbide-Based Composites, Mech. Compos. Mater., 2011, 46(6), p 667–678

    Article  Google Scholar 

  23. G. Constantinides, F. Ulm, and K. Van Vliet, On the Use of Nanoindentation for Cementitious Materials, Mater. Struct., 2003, 36(257), p 191–196

    Article  Google Scholar 

  24. F.J. Ulm et al., Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, Shale, J. Am. Ceram. Soc., 2007, 90(9), p 2677–2692

    Article  Google Scholar 

  25. J.-E. Ståhl, Metal Cutting—Theories and Models, Lund University, Lund, 2012, p 185–212

    Google Scholar 

  26. F.R.S. de Gusmão, E.M.M. Ortega, and G.M. Cordeiro, The Generalized Inverse Weibull Distribution, Stat. Pap., 2009, 52(3), p 591–619

    Article  Google Scholar 

  27. J.I. McCool, Extending the Capability of the Greenwood Williamson Microcontact Model, J. Tribol., 2000, 122(3), p 496

    Article  Google Scholar 

  28. M. Tiryakioglu and J. Campbell, Weibull Analysis of Mechanical Data for Castings: A Guide to the Interpretation of Probability Plots, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41A(12), p 3121–3129

    Article  Google Scholar 

  29. A.C. Fischer-Cripps, Nanoindentation. Mechanical Engineering, Vol 1, 3rd edn., FF.Ling, Springer, Killarney Heights, NSW, 2011, p 272.

  30. Y. Xia et al., Effect of Surface Roughness in the Determination of the Mechanical Properties of Material Using Nanoindentation Test, Scanning, 2014, 36(1), p 134–149

    Article  Google Scholar 

  31. J.Y. Kim et al., Influence of Surface-Roughness on Indentation Size Effect, Acta Mater., 2007, 55(10), p 3555–3562

    Article  Google Scholar 

  32. K.A. Brownlee, Statistical Theory and Methodology in Science and Engineering, Wiley, New York, 1965, p 93–105

    Google Scholar 

  33. T.V. Rajan, C.P. Sharma, and A. Sharma, Heat Treatment: Principles and Techniques, PHI, Learning, New Delhi, 2012, p 330

    Google Scholar 

  34. S. Ji et al., Weibull Statistical Analysis of the Effect of Melt Conditioning on the Mechanical Properties of AM60 Alloy, Mater. Sci. Eng. A, 2013, 566, p 119–125

    Article  Google Scholar 

  35. H. Gasan and F. Erturk, Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques, Metall. Mater. Trans. A, 2013, 44(11), p 4993–5005

    Article  Google Scholar 

  36. A. Wiengmoon et al., Microstructural and Crystallographical Study of Carbides in 30 wt.%Cr Cast Irons, Acta Mater., 2005, 53(15), p 4143–4154

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the strategic research program, the Sustainable Production Initiative—SPI, a cooperative effort of Lund University and Chalmers University of Technology. The authors would like to thank Xylem Water Solution AB for providing the experimental materials and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ståhl, J.E. & Zhou, J. Analysis of In Situ Mechanical Properties of Phases in High-Alloyed White Iron Measured by Grid Nanoindentation. J. of Materi Eng and Perform 24, 4022–4031 (2015). https://doi.org/10.1007/s11665-015-1672-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1672-1

Keywords

Navigation