Skip to main content
Log in

Material-Model-Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Previous experimental investigations reported in the open literature have indicated that applying polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles, and laboratory/field test-plates, as well as the blast-mitigation capacity of combat helmets. The protective role of polyurea coatings/linings has been linked to polyurea microstructure, which consists of discrete hard-domains distributed randomly within a compliant/soft matrix. When this protective role is investigated computationally, the availability of reliable, high-fidelity constitutive models for polyurea is vitally important. In the present work, a comprehensive overview and a critical assessment of a polyurea material constitutive model, recently proposed by Shim and Mohr (Int J Plast 27:868-886, 2011), are carried out. The review revealed that this model can accurately account for the experimentally measured uniaxial-stress versus strain data obtained under monotonic and multistep compressive loading/unloading conditions, as well as under stress relaxation conditions. On the other hand, by combining analytical and finite-element procedures with the material model in order to define the basic shock-Hugoniot relations for this material, it was found that the computed shock-Hugoniot relations differ significantly from their experimental counterparts. Potential reasons for the disagreement between the computed and experimental shock-Hugoniot relations are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Grujicic, T. He, and B. Pandurangan, Development and Parameterization of an Equilibrium Material Model for Segmented Polyurea, Multidiscip. Model. Mater. Struct., 2011, 7, p 96–114

    Google Scholar 

  2. M. Grujicic, T. He, B. Pandurangan, F.R. Svingala, G.S. Settles, and M.J. Hargather, Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview, J. Mater. Eng. Perform., 2011, 21, p 2–16

    Article  Google Scholar 

  3. M. Grujicic, B. Pandurangan, T. He, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition, Mater. Sci. Eng. A, 2010, 527, p 7741–7751

    Article  Google Scholar 

  4. M. Grujicic, B. Pandurangan, G. Arakere, W.C. Bell, T. He, and X. Xie, Material-Modeling and Structural-Mechanics Aspects of the Traumatic Brain Injury Problem, Multidiscip. Model. Mater. Struct., 2010, 6, p 335–363

    Google Scholar 

  5. M. Grujicic, T. He, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, Development and Parameterization of a Time-Invariant (Equilibrium) Material Model for Segmented Elastomeric Polyureas, J. Mater. Des. Appl., 2011, 225, p 182–194

    Google Scholar 

  6. M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact-Mitigation Capability of Polyurea When Used as Helmet Suspension Pad Material, Mater. Des., 2010, 31, p 4050–4065

    Article  Google Scholar 

  7. M. Grujicic, W.C. Bell, B. Pandurangan, and P.S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet, J. Mater. Eng. Perform., 2011, 20, p 877–893

    Article  Google Scholar 

  8. M. Grujicic, B. Pandurangan, A.E. King, J. Runt, J. Tarter, and G. Dillon, Multi-Length Scale Modeling and Analysis of Microstructure Evolution and Mechanical Properties in Polyurea, J. Mater. Sci., 2011, 46, p 1767–1779

    Article  Google Scholar 

  9. M. Grujicic, B. Pandurangan, W.C. Bell, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Molecular-Level Simulations of Shock Generation and Propagation in Polyurea, Mater. Sci. Eng. A, 2011, 528, p 3799–3808

    Article  Google Scholar 

  10. M. Grujicic, A. Arakere, B. Pandurangan, A. Grujicic, A.A. Littlestone, and R.S. Barsoum, Computational Investigation of Shock-Mitigation Efficacy of Polyurea when used in a Combat Helmet: A Core Sample Analysis, Multidiscip. Model. Mater. Struct., 2012, 8, p 297–331

    Google Scholar 

  11. M. Grujicic, B.P. d’Entremont, B. Pandurangan, A. Grujicic, M. LaBerge, J. Runt, J. Tarter, and G. Dillon, A Study of the Blast-induced Brain White-Matter Damage and the Associated Diffuse Axonal Injury, Multidiscip. Model. Mater. Struct., 2012, 8, p 213–245

    Google Scholar 

  12. A. Grujicic, M. LaBerge, M. Grujicic, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, Potential Improvements in Shock-Mitigation Efficacy of a Polyurea-Augmented Advanced Combat Helmet: A Computational Investigation, J. Mater. Eng. Perform., 2012, 21, p 1562–1579

    Article  Google Scholar 

  13. M. Grujicic, B.P. d’Entremont, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance, J. Mater. Eng. Perform., 2012, 21, p 2024–2037

    Article  Google Scholar 

  14. M. Grujicic and B. Pandurangan, Meso-Scale Analysis of Segmental Dynamics in Micro-Phase Segregated Polyurea, J. Mater. Sci., 2012, 47, p 3876–3889

    Article  Google Scholar 

  15. M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, J. Runt, J. Tarter, and G. Dillon, Molecular-Level Computational Investigation of Shock-Wave Mitigation Capability of Polyurea, J. Mater. Sci., 2012, 47, p 8197–8215

    Article  Google Scholar 

  16. M. Grujicic, J.S. Snipes, S. Ramaswami, R. Yavari, J. Runt, J. Tarter, and G. Dillon, Coarse-Grained Molecular-Level Analysis of Polyurea Properties and Shock-Mitigation Potential, J. Mater. Eng. Perform., 2013, 22, p 1964–1981

    Article  Google Scholar 

  17. T. Choi, D. Fragiadakis, C.M. Roland, and J. Runt, Microstructure and Segmental Dynamics of Polyurea Under Uniaxial Deformation, Macromolecules, 2012, 45, p 3581–3589

    Article  Google Scholar 

  18. A. Castagna, A. Pangon, T. Choi, G. Dillon, and J. Runt, The Role of Soft Segment Molecular Weight on Microphase Separation and Dynamics in Bulk Polymerized Poly(tetramethylene oxide) Based Polyureas, Macromolecules, 2012, 45, p 8438–8444

    Article  Google Scholar 

  19. M. Grujicic, H. Marvi, G. Arakere, W.C. Bell, and I. Haque, The Effect of Up-Armoring the High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV) on the Off-Road Vehicle Performance, Multidiscip. Model. Mater. Struct., 2010, 6(2), p 229–256

    Google Scholar 

  20. M. Grujicic, W.C. Bell, G. Arakere, and I. Haque, Finite Element Analysis of the Effect of Up-Armoring on the Off-Road Braking and Sharp-Turn Performance of a High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223(D11), p 1419–1434

    Article  Google Scholar 

  21. M. Grujicic, G. Arakere, H.K. Nallagatla, W.C. Bell, and I. Haque, Computational Investigation of Blast Survivability and Off-Road Performance of an Up-Armored High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223, p 301–325

    Article  Google Scholar 

  22. V.F. Nesterenko, Shock (Blast) Mitigation by “Soft” Condensed Matter, MRS Symp. Proc., 2002, 759, p MM 4.3.1–MM 4.3.12

    Article  Google Scholar 

  23. A.J. Ryan, Spinodal Decomposition During Bulk Copolymerization: Reaction Injection Molding, Polymer, 1990, 31, p 707–712

    Article  Google Scholar 

  24. Y.A. Bahei-El-Din, G.J. Dvorak, and O.J. Fredricksen, A Blast-Tolerant Sandwich Plate Design with a Polyurea Interlayer, Int. J. Solids Struct., 2006, 43, p 7644–7658

    Article  Google Scholar 

  25. S.M. Walsh, R.R. Scott, and D.M. Spagnuolo, The Development of a Hybrid Thermoplastic Ballistic Material with Application to Helmets, ARL-TR-3700, Army Research Laboratory, December 2005

  26. S.A. Tekalur, A. Shukla, and K. Shivakumar, Blast Resistance of Polyurea-based Layered Composite Materials, Compos. Struct., 2008, 84, p 271–281

    Article  Google Scholar 

  27. M. Grujicic, B. Pandurangan, and B.A. Cheeseman, A Computational Analysis of Detonation of Buried Mines, Multidiscip. Model. Mater. Struct., 2006, 2, p 363–387

    Google Scholar 

  28. M. Grujicic, B. Pandurangan, and B.A. Cheeseman, The Effect of Degree of Saturation of Sand on Detonation Phenomena Associated with Shallow-Buried and Ground-Laid Mines, Shock Vib., 2006, 13, p 41–62

    Article  Google Scholar 

  29. M. Grujicic, B. Pandurangan, Y. Huang, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Impulse Loading Resulting from Shallow Buried Explosives in Water-Saturated Sand, J. Mater. Des. Appl., 2007, 221, p 21–35

    Google Scholar 

  30. M. Grujicic, B. Pandurangan, J.D. Summers, B.A. Cheeseman, and W.N. Roy, Application of the Modified Compaction Material Model to Soil with Various Degrees of Water Saturation, Shock Vib., 2008, 15, p 79–99

    Article  Google Scholar 

  31. M. Grujicic, B. Pandurangan, I. Haque, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, A Computational Analysis of Mine-Blast Survivability of a Soft-Skin Vehicle, Multidiscip. Model. Mater. Struct., 2007, 3, p 431–460

    Google Scholar 

  32. M. Grujicic, B. Pandurangan, G.M. Mocko, S.T. Hung, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, A Combined Multi-Material Euler/Lagrange Computational Analysis of Blast Loading Resulting from Detonation of Buried Landmines, Multidiscip. Model. Mater. Struct., 2008, 4, p 105–124

    Google Scholar 

  33. M. Grujicic, B. Pandurangan, R. Qiao, B.A. Cheeseman, W.N. Roy, R.R. Skaggs, and R. Gupta, Parameterization of the Porous-Material Model for Sand with Different Levels of Water Saturation, Soil Dyn. Earthq. Eng., 2008, 28, p 20–35

    Article  Google Scholar 

  34. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Derivation and Validation of a Material Model for Clayey Sand for Use in Landmine Detonation Computational Analysis, Multidiscip. Model. Mater. Struct., 2009, 5(4), p 311–344

    Google Scholar 

  35. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Computer-Simulations Based Development of a High Strain-Rate, Large-Deformation, High-Pressure Material Model for STANAG 4569 Sandy Gravel, Soil Dyn. Earthq. Eng., 2008, 28, p 1045–1062

    Article  Google Scholar 

  36. M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Derivation, Parameterization and Validation of a Sandy-Clay Material Model for Use in Landmine Detonation Computational Analyses, J. Mater. Eng. Perform., 2010, 10(3), p 434–450

    Article  Google Scholar 

  37. M. Grujicic, T. He, B. Pandurangan, W.C. Bell, N. Coutris, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, Development, Parameterization and Validation of a Visco-Plastic Material Model for Sand with Different Levels of Water Saturation, J. Mater. Des. Appl., 2009, 223, p 63–81

    Google Scholar 

  38. H.J. Qi and M.C. Boyce, Stress-Strain Behavior of Thermoplastic Polyurethanes, Mech. Mater., 2005, 37, p 817–839

    Article  Google Scholar 

  39. A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Nemat-Nasser, An Experimentally-based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86, p 5847–5866

    Article  Google Scholar 

  40. C. Li and J. Lua, A Hyper-Viscoelastic Constitutive Model for Polyurea, Mater. Lett., 2009, 63, p 877–880

    Article  Google Scholar 

  41. T. Jiao, R.J. Clifton, and S.E. Grunschel, Pressure-Sensitivity and Constitutive Modeling of an Elastomer at High Strain Rates, 16th APS Topical Conference on Shock Compression of Condensed Matter, June 28–July 3, 2009

  42. T.M. El Sayed, “Constitutive Models for Polymers and Soft Biological Tissues,” Ph.D. Thesis, California Institute of Technology, 2008

  43. W. Mock, S. Bartyczak, G. Lee, J. Fedderlym, and K. Jordan, Dynamic Properties of Polyurea 1000, Shock Compression of Condensed Matter, American Institute for Physics, 2009, p 1241–1244

  44. J. Shim and D. Mohr, Rate Dependent Finite Strain Constitutive Model of Polyurea, Int. J. Plast., 2011, 27, p 868–886

    Article  Google Scholar 

  45. L.M. Yang, V.P.W. Shim, and C.T. Lim, A Visco-Hyperelastic Approach to Modeling the Constitutive Behavior of Rubber, Int. J. Impact Eng., 2000, 24, p 545–560

    Article  Google Scholar 

  46. V.P.W. Shim, L.M. Yang, C.T. Lim, and P.H. Law, A Visco-Hyperelastic Constitutive Model to Characterize Both Tensile and Compressive Behavior of Rubber, J. Appl. Polym. Sci., 2004, 92, p 523–531

    Article  Google Scholar 

  47. M.S. Hoo Fatt and X. Ouyang, Integral-based Constitutive Equation for Rubber at High Strain Rates, Int. J. Solids Struct., 2007, 44, p 6491–6506

    Article  Google Scholar 

  48. J.S. Bergström and M.C. Boyce, Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers, J. Mech. Phys. Solids, 1998, 46, p 931–954

    Article  Google Scholar 

  49. N. Huber and C. Tsakmakis, Finite Deformation Viscoelasticity Laws, Mech. Mater., 2000, 32, p 1–18

    Article  Google Scholar 

  50. Y. Tomita, K. Azuma, and M. Naito, Computational Evaluation of Strain-Rate-Dependent Deformation Behavior of Rubber and Carbon-Black-Filled Rubber Under Monotonic and Cyclic Straining, Int. J. Mech. Sci., 2008, 50, p 856–868

    Article  Google Scholar 

  51. M. Johlitz, H. Steeb, S. Diebels, A. Chatzouridou, J. Batal, and W. Possart, Experimental and Theoretical Investigation of Nonlinear Viscoelastic Polyurethane Systems, J. Mater. Sci., 2007, 42, p 9894–9904

    Article  Google Scholar 

  52. E.M. Arruda and M.C. Boyce, A 3-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials, J. Mech. Phys. Solids, 1993, 41, p 389–412

    Article  Google Scholar 

  53. C.M. Roland, Network Recovery from Uniaxial Extension I: Elastic Equilibrium, Rubber Chem. Technol., 1989, 62, p 863–879

    Article  Google Scholar 

  54. A.R. Johnson, C.J. Quigley, and C.E. Freese, A Viscohyperelastic Finite Element Model for Rubber, Comput. Methods Appl. Mech. Eng., 1995, 127, p 163–180

    Article  Google Scholar 

  55. S.J. Quintavalla and S.H. Johnson, Extension of the Bergstrom-Boyce Model to High Strain Rates, Rubber Chem. Technol., 2004, 77, p 972–981

    Article  Google Scholar 

  56. J.S. Bergström and L.B. Hilbert, A Constitutive Model of Predicting the Large Deformation Thermomechanical Behavior of Fluoropolymers, Mech. Mater., 2005, 37, p 899–913

    Article  Google Scholar 

  57. P. Areias and K. Matous, Finite Element Formulation for Modeling Nonlinear Viscoelastic Elastomers, Comput. Methods Appl. Mech. Eng., 2008, 197, p 4702–4717

    Article  Google Scholar 

  58. A.F.M.S. Amin, M.S. Alam, and Y. Okui, An Improved Hyperelasticity Relation in Modeling Viscoelasticity Response of Natural and High Damping Rubbers in Compression: Experiments, Parameter Identification and Numerical Verification, Mech. Mater., 2002, 34, p 75–95

    Article  Google Scholar 

  59. G. Palm, R.B. Dupaix, and J. Castro, Large Strain Mechanical Behavior of Poly(methyl methacrylate) (PMMA) Near the Glass Transition Temperature, J. Eng. Mater. Technol., 2006, 128, p 559–563

    Article  Google Scholar 

  60. A. Khan and H. Zhang, Finite Deformation of a Polymer: Experiments and Modeling, Int. J. Plast., 2001, 17, p 1167–1188

    Article  Google Scholar 

  61. O.U. Colak, Modeling Deformation Behavior of Polymers with Viscoplasticity Theory Based on Overstress, Int. J. Plast., 2005, 21, p 145–160

    Article  Google Scholar 

  62. A.F.M.S. Amin, A. Lion, S. Sekita, and Y. Okui, Nonlinear Dependence of Viscosity in Modeling the Rate-Dependent Response of Natural and High Damping Rubbers in Compression and Shear: Experimental Identification and Numerical Verification, Int. J. Plast., 2006, 22, p 1610–1657

    Article  Google Scholar 

  63. A.S. Khan, O. Lopez-Pamies, and R. Kazmi, Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers Over a Wide Range of Strain Rates and Temperatures, Int. J. Plast., 2006, 22, p 581–601

    Article  Google Scholar 

  64. M.S. Hoo Fatt and X. Ouyang, Three-Dimensional Constitutive Equations for Styrene Butadiene Rubber at High Strain Rates, Mech. Mater., 2008, 40, p 1–16

    Article  Google Scholar 

  65. L. Anand and N.M. Ames, On Modeling the Micro-Indentation Response of an Amorphous Polymer, Int. J. Plast., 2006, 22, p 1123–1170

    Article  Google Scholar 

  66. M.E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua, Cambridge University Press, New York, NY, 2010, p 293

    Book  Google Scholar 

  67. MATLAB, Version 8.0.0.783, R2012b, The MathWorks Inc., MA

  68. ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011

  69. M. Grujicic, B. Pandurangan, W.C. Bell, and S. Bagheri, Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials, J. Mater. Eng. Perform., 2012, 21, p 167–179

    Article  Google Scholar 

  70. L. Davison, Fundamentals of Shock-Wave Propagation in Solids, Springer-Verlag, Heidelberg, 2008, ISBN 978-3-540-74568-6

    Google Scholar 

  71. M. Grujicic, B. Pandurangan, J.S. Snipes, C-F.Yen, and B.A. Cheeseman, Multi-Length Scale Enriched Continuum-Level Material Model for Kevlar®-Fiber Reinforced Polymer-Matrix Composites, J. Mater. Eng. Perform., 2013, 22, p 681–695

    Article  Google Scholar 

Download references

Acknowledgments

The material presented in this paper is based on work supported by the Office of Naval Research (ONR) research contract entitled “Elastomeric Polymer-By-Design to Protect the Warfighter Against Traumatic Brain Injury by Diverting the Blast Induced Shock Waves from the Head,” Contract Number 4036-CU-ONR-1125 as funded through the Pennsylvania State University. The authors are indebted to Dr. Roshdy Barsoum of ONR for continuing support and interest in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mica Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Snipes, J.S., Galgalikar, R. et al. Material-Model-Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea. J. of Materi Eng and Perform 23, 357–371 (2014). https://doi.org/10.1007/s11665-013-0769-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0769-7

Keywords

Navigation