Skip to main content

Advertisement

Log in

Modeling the Effects of Cu Variations on the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper investigates the influence of Cu contents on the precipitated phases and the resultant properties of Al-Zn-Mg-Cu alloys. The quantities of three major precipitated phases and phase diagrams of Al-Zn-Mg-Cu alloys with various Cu contents have been calculated based on materials models and properties database. The results show that the amount of the main hardening η (MgZn2) phase increases with an increase in Cu content up to 1.4% (wt.%), whereby the maximum amount of η phase can be obtained. S (Al2CuMg) phase forms markedly as Cu content increases and the precipitation process occurs rapidly at early stage with temperature between 430 and 480 °C. T (A12Mg3Zn3) phase reduces significantly as the Cu content increases, and the presence of T phase in the alloy largely depends on the Cu:Mg ratio. The experimental verification for the presence of major phases is in good accordance with the modeling results. The physical and mechanical properties of the alloys under various heat treatment conditions have also been simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Sepehrband and S. Esmaeili, Application of Recently Developed Approaches to Microstructural Characterization and Yield Strength Modeling of Aluminum Alloy AA7030, Mater. Sci. Eng. A, 2008, 487, p 309–315

    Article  Google Scholar 

  2. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Evolution of Precipitate Microstructures During the Retrogression and Re-Ageing Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58, p 248–260

    Article  CAS  Google Scholar 

  3. M.A. Suarez, O. Alvarez, M.A. Alvarez, R.A. Rodriguez, S. Valdez, and J.A. Juarez, Characterization of Microstructures Obtained in Wedge Shaped Al-Zn-Mg Ingots, J. Alloys Compd., 2010, 492, p 373–377

    Article  CAS  Google Scholar 

  4. X.M. Li and M.J. Starink, DSC Analysis of Phase Transitions and Their Correlation with Properties of Overaged Al-Zn-Mg-Cu Alloys, J. Mater. Eng. Perform., 2012, 21, p 977–984

    CAS  Google Scholar 

  5. X.M. Li and M.J. Starink, The Effect of Compositional Variations on Characteristics of Coarse Intermetallic Particles in Overaged 7000 Aluminium Alloys, Mater. Sci. Technol., 2001, 171, p 324–1328

    Google Scholar 

  6. J.K. Park and A.J. Ardell, Precipitate Microstructure of Peak-Aged 7075 Al, Scr. Metall., 1988, 22, p 1115–1119

    Article  CAS  Google Scholar 

  7. J.T. Burns, J.M. Larsen, and R.P. Gangloff, Driving Forces for Localized Corrosion-to-Fatigue Crack Transition in Al-Zn-Mg-Cu, Fatigue Fract. Eng. Mater. Struct., 2011, 34, p 745–773

    Article  CAS  Google Scholar 

  8. N. Yazdian, F. Karimzadeh, and M. Tavoosi, Microstructural Evolution of Nanostructure 7075 Aluminum Alloy During Isothermal Annealing, J. Alloys Compd., 2010, 493, p 137–141

    Article  CAS  Google Scholar 

  9. M.J. Starink and X.M. Li, A Model for the Electrical Conductivity of Peak Aged and Overaged Al-Zn-Mg-Cu Alloys, Metall. Mater. Trans. A, 2003, 34A, p 899–911

    Article  CAS  Google Scholar 

  10. Z. Guo, N. Saunders, A.P. Miodownik, and J.-Ph. Schillé, Modeling of Materials Properties and Behaviour Critical to Casting Simulation, Mater. Sci. Eng. A, 2005, 413-414, p 465–469

  11. X. Li and S. Soo, Numerical Simulation of the Superplastic Forming of a Dental Ridge Augmentation Membrane, Mater. Manuf. Process., 2010, 25, p 1470–1476

    Article  CAS  Google Scholar 

  12. J. Yu and X. Li, Modeling of the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys, J. Phase Equilib. Diffus., 2011, 32, p 350–360

    Article  CAS  Google Scholar 

  13. Z. Guo, N. Saunders, J.P. Schillé, and A.P. Miodownik, Material Properties for Process Simulation, Mater. Sci. Eng. A, 2009, 499, p 7–13

    Article  Google Scholar 

  14. X. M. Li, and Y. Ding, Modeling Analysis and Experimental Studies of Pure Iron Processed by Asymmetric Rolling, The 5th International Conference on Nanomaterials by Severe Plastic Deformation, March 2011 (Nanjing, China), Mater Sci Forum, 2011, 667-669, p 139–144

  15. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.-Ph. Schillé, Using JMatPro to Model Materials Properties and Behaviour, JOM, 2003, 55, p 60–65

    Article  CAS  Google Scholar 

  16. G. Zhong, S. Wu, H. Jiang, and P. An, Effects of Ultrasonic Vibration on the Iron-Containing Intermetallic Compounds Of High Silicon Aluminum Alloy with 2% Fe, J. Alloys Compd., 2010, 492, p 482–487

    Article  CAS  Google Scholar 

  17. N. Kamp, A. Sullivan, and J.D. Robson, Modeling of Friction Stir Welding of 7xxx Aluminium Alloys, Mater. Sci. Eng. A, 2007, 466, p 246–255

    Article  Google Scholar 

  18. X. Cao, N. Saunders, and J. Campbell, Effect of Iron and Manganese Contents on Convection-Free Precipitation and Sedimentation of Primary α-Al(FeMn)Si Phase in Liquid Al-11.5Si-0.4Mg Alloy, J. Mater. Sci., 2004, 39, p 2303–2314

    Article  CAS  Google Scholar 

  19. H.M. Flower, High Performance Materials in Aerospace, Chapman & Hall, London, UK, 1995

    Book  Google Scholar 

  20. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys-I. The Model, Acta Metall. Mater., 1990, 38, p 1789–1802

    Article  CAS  Google Scholar 

  21. R.W. Cahn, P. Haasen, and E.J. Kramer, Materials Science and Technology-Structure and Properties of Nonferrous Alloys, VCH Publishers Inc., New York, USA, 1996

    Google Scholar 

  22. A. Deschamps, F. Livet, and Y. Brechet, Influence of Predeformation on Ageing in an Al-Zn-Mg Alloy-I. Microstructure Evolution and Mechanical Properties, Acta Mater., 1998, 47, p 281–292

    Article  Google Scholar 

  23. X.M. Li and M.J. Starink, Identification and Analysis of Intermetallic Phases in Overaged Zr-Containing and Cr-Containing Al-Zn-Mg-Cu Alloys, J. Alloys Compd., 2011, 509, p 471–476

    Article  CAS  Google Scholar 

  24. D.J. Strawbridge, W. Hume-Rothery, and A.T. Little, The Constitution of Al-Cu-Mg-Zn Alloys at 460 °C, J. Inst. Met., 1948, 74, p 191–225

    Google Scholar 

  25. I.J. Polmear, Light Alloys-Metallurgy of the Light Metals, St. Edmundsbury Press Ltd, Suffolk, UK, 1996

    Google Scholar 

  26. M. Dhiman, D.K. Dwivedi, R. Sehgal, and I.K. Bhat, Effect of Iron on Microstructure of Al-12Si-1Cu-0.1Mg Alloy, Mater. Manuf. Process., 2008, 23, p 805–808

    Article  CAS  Google Scholar 

  27. Z. Guo and W. Sha, Quantification of Precipitate Fraction in Al-Si-Cu Alloys, Mater. Sci. Eng. A, 2005, 392, p 449–452

    Article  Google Scholar 

  28. T.C. Tsai and T.H. Chuang, Atmospheric Corrosion Cracking of a Superplastic 7475 Aluminum Alloy, Metall. Mater. Trans. A, 1996, 27A, p 2617–2627

    Article  CAS  Google Scholar 

  29. K.S. Ghosh, K. Das, and U.K. Chatterjee, Correlation of Stress Corrosion Cracking Behaviour with Electrical Conductivity and Open Circuit Potential in Al-Li-Cu-Mg-Zr Alloys, Mater. Corros., 2007, 58, p 181–188

    Article  CAS  Google Scholar 

  30. R.R. Sawtell and J.T. Staley, Interactions Between Quenching and Aging in Alloy 7075, Aluminium, 1983, 59, p 127–133

    CAS  Google Scholar 

  31. T.C. Tsai and T.H. Chuang, Relationship Between Electrical Conductivity and Stress Corrosion Cracking Susceptibility of Al 7075 and Al 7475 Alloys, Corrosion, 1996, 6, p 414–416

    Article  Google Scholar 

  32. J.K. Park and A.J. Ardell, Relationship Between Electrical Conductivity and Stress Corrosion Cracking Susceptibility of Al 7075 and Al 7475 Alloys, Acta Metall. Mater., 1991, 39, p 591–598

    Article  CAS  Google Scholar 

  33. P. Olafsson, R. Sandstrom, and A. Karlsson, Electrical Conductivity of Aluminium Alloys, Mater. Sci. Forum, 1996, 217-222, p 981–986

    Article  CAS  Google Scholar 

  34. Y. Zeng, S. Mu, P. Wu, K.P. Ong, and J. Zhang, Relative Effects of all Chemical Elements on the Electrical Conductivity of Metal and Alloys: An Alternative to Norbury-Linde Rule, J. Alloys Compd., 2009, 478, p 345–354

    Article  CAS  Google Scholar 

  35. T.S. Huang and G.S. Frankel, Kinetics of Sharp Intergranular Corrosion Fissures in AA7178, Corros. Sci., 2007, 49, p 858–876

    Article  CAS  Google Scholar 

  36. J. Guo and M.T. Samonds, Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration, J. Phase Equilib. Diffus., 2007, 28, p 58–63

    Article  CAS  Google Scholar 

  37. J.M. Molina, R. Prieto, J. Narcisoa, and E. Louis, The Effect of Porosity on the Thermal Conductivity of Al-12 wt.% Si/SiC Composites, Scr. Mater., 2009, 60, p 582–585

    Article  CAS  Google Scholar 

  38. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworth & Co Ltd, England, 1976

    Google Scholar 

  39. T.J. Warner, R.A. Shahani, P. Lassince, and G.M. Raynaud, Improved Durability Aluminium Alloys for Airframe Structures, 3rd ASM Conf. on Synthesis, Processing and Modeling of Advanced Materials, 1997, Paris, France

Download references

Acknowledgments

The Key Laboratory for Advanced Metallic Materials of Jiangsu Province, Southeast University, China, is gratefully acknowledged for providing the usage of JMatPro 6 software. The authors would like to thank Mr. Y. J. Chen for valuable technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Yu, J.J. Modeling the Effects of Cu Variations on the Precipitated Phases and Properties of Al-Zn-Mg-Cu Alloys. J. of Materi Eng and Perform 22, 2970–2981 (2013). https://doi.org/10.1007/s11665-013-0588-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0588-x

Keywords

Navigation