Skip to main content
Log in

Microstructures and Properties of the C/Zr-O-Si-C Composites Fabricated by Polymer Infiltration and Pyrolysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A way to improve the ablation properties of the C/SiC composites in an oxyacetylene torch environment was investigated by the precursor infiltration and pyrolysis route using three organic precursors (zirconium butoxide, polycarbosilane, and divinylbenzene). The ceramic matrix derived from the precursors at 1200 °C was mainly a mixture of SiC, ZrO2, and C. After annealing at 1600 °C for 1 h, ZrO2 partly transformed to ZrC because of the carbothermic reductions and completely transformed to ZrC at 1800 °C in 1 h. The mechanical properties of the composites decreased with increasing temperature, while the ablation resistance increased due to the increasing content of ZrC. Compared with C/SiC composites, the ablation resistance of the C/Zr-O-Si-C composites overwhelms because of the oxide films which formed on the ablation surfaces. And, the films were composed of two layers: the porous surface layer (the mixture of ZrO2 and SiO2) and the dense underlayer (SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.E. Tressler, Recent Developments in Fibers and Interphases for High Temperature Ceramic Matrix Composites, Compos. A, 1999, 30, p 429–437

    Article  Google Scholar 

  2. H. Li, L. Zhang, L. Cheng, and Y. Wang, Oxidation Analysis of 2D C/ZrC-SiC Composites with Different Coating Structures in CH4 Combustion Gas Environment, Ceram. Int., 2009, 35, p 2277–2282

    Article  CAS  Google Scholar 

  3. Z. Wang, S. Dong, X. Zhang, H. Zhou, D. Wu, Q. Zhou, and D. Jiang, Fabrication and Properties of Cf/SiC-ZrC Composites, J. Am. Ceram. Soc., 2008, 91(10), p 3434–3436

    Article  CAS  Google Scholar 

  4. A. Gaudon, A. Dauger, A. Lecomte, B. Soulestin, and R. Guinebretière, Phase Separation in Sol-Gel Derived ZrO2-SiO2 Nanostructured Materials, J. Eur. Ceram. Soc., 2005, 25, p 283–286

    Article  CAS  Google Scholar 

  5. B.P. Das, M. Panneerselvam, and K.J. Rao, A Novel Microwave Route for the Preparation of ZrC-SiC Composites, J. Solid State Chem., 2003, 173, p 196–202

    Article  CAS  Google Scholar 

  6. N.I. Baklanova, O.I. Kiselyova, A.T. Titov, and T.M. Zima, Microstructural Features of the ZrO2 Interfacial Coatings on SiC Fibers Before and After Exposition to Air at High Temperatures, J. Eur. Ceram. Soc., 2008, 28, p 1687–1696

    Article  CAS  Google Scholar 

  7. Z. Wang, S.M. Dong, Y.S. Ding, X.Y. Zhang, H.J. Zhou, J.S. Yang, and B. Lu, Mechanical Properties and Microstructures of Cf/SiC-ZrC Composites Using T700SC Carbon Fibers as Reinforcements, Ceram. Int., 2011, 37, p 695–700

    Article  CAS  Google Scholar 

  8. Z. Li, H. Li, S. Zhang, and K. Li, Microstructure and Ablation Behaviors of Integer Felt Reinforced C/C-SiC-ZrC Composites Prepared by a Two-Step Method, Ceram. Int., 2012, 38, p 3419–3425

    Article  CAS  Google Scholar 

  9. N. Padmavathi, S. Kumari, V.V. Bhanu Prasad, J. Subrahmanyam, and K.K. Ray, Processing of Carbon-Fiber Reinforced (SiC + ZrC) Mini-Composites by Soft-Solution Approach and Their Characterization, Ceram. Int., 2009, 35, p 3447–3454

    Article  CAS  Google Scholar 

  10. K. Jian, Z. Chen, Q. Ma, H. Hu, and W. Zheng, Effects of Pyrolysis Temperatures on the Microstructure and Mechanical Properties of 2D-Cf/SiC Composites Using Polycarbosilane, Ceram. Int., 2007, 33, p 73–76

    Article  CAS  Google Scholar 

  11. Y. Ma, S. Wang, and Z. Chen, Raman Spectroscopy Studies of the High-Temperature Evolution of the Free Carbon Phase in Polycarbosilane Derived SiC Ceramics, Ceram. Int., 2010, 36, p 2455–2459

    Article  CAS  Google Scholar 

  12. X.X. Jiang, R. Brydson, S.P. Appleyard, and B. Rand, Characterization of the Fibre-Matrix Interfacial Structure in Carbon Fibre-Reinforced Polycarbosilane-Derived SiC Matrix Composites Using STEM/EELS, J. Microsc., 1999, 196, p 203–212

    Article  CAS  Google Scholar 

  13. X.T. Shen, K.Z. Li, H.J. Li, H.Y. Du, W.F. Cao, and F.T. Lan, Microstructure and Ablation Properties of Zirconium Carbide Doped Carbon/Carbon Composites, Carbon, 2010, 48(2), p 344–351

    Article  CAS  Google Scholar 

  14. S. Kumar, A. Kumar, K. Sampath, V.V. Bhanu Prasad, J.C. Chaudhary, A.K. Gupta, and G. Rohini Devi, Fabrication and Erosion Studies of C-SiC Composite Jet Vanes in Solid Rocket Motor Exhaust, J. Eur. Ceram. Soc., 2011, 31, p 2425–2431

    Article  CAS  Google Scholar 

  15. Q.M. Liu, L.T. Zhang, J. Liu, X.G. Luan, L.F. Cheng, and Y.G. Wang, The Oxidation Behavior of SiC-ZrC-SiC Coated C/SiC Minicomposites at Ultrahigh Temperatures, J. Am. Ceram. Soc., 2010, 93, p 3990–3992

    Article  CAS  Google Scholar 

  16. B. Yan, Z. Chen, J. Zhu, J. Zhang, and Y. Jiang, Effects of Ablation at Different Regions in Three-Dimensional Orthogonal C/SiC Composites Ablated by Oxyacetylene Torch at 1800 °C, J. Mater. Process. Technol., 2009, 209(2009), p 3438–3443

    Article  CAS  Google Scholar 

  17. Z. Chen, D. Fang, Y. Miao, and B. Yan, Comparison of Morphology and Microstructure of Ablation Centre of C/SiC Composites by Oxy-Acetylene Torch at 2900 and 3550 °C, Corros. Sci., 2008, 50, p 3378–3381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ph.D. S. Wang for valuable discussions and the National Natural Science Foundation of China (90916002) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Chen, Z. Microstructures and Properties of the C/Zr-O-Si-C Composites Fabricated by Polymer Infiltration and Pyrolysis. J. of Materi Eng and Perform 22, 2510–2514 (2013). https://doi.org/10.1007/s11665-013-0554-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0554-7

Keywords

Navigation