Skip to main content

Advertisement

Log in

Crack-Growth Behavior of Laser Surface-Alloyed Low-Carbon Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Crack-growth behavior of Nd:YAG laser surface-alloyed as-received low-carbon steel Fe360B was evaluated. Thin surface layer was alloyed with silicon carbide SiC. During laser surface alloying process SiC powder dissolved in the melted pool. The surface-alloyed layer had as-solidified structure composed mainly of dendrites of ferrite, fine martensite needles, and retained austenite. The micro-hardness of the laser surface-alloyed layer was about 850 HV0.1. In laser surface-alloyed layer compressive residual stresses of average amount of σ RS = −100 MPa were obtained. In crack-growth tests comparison between specimens of as-received low-carbon steel Fe360B and the same steel with laser-alloyed surface was made. As the crack propagation was perpendicular to the interface between the laser-alloyed layers and the base metal, laser surface-alloyed specimens exhibited higher crack-growth resistance in the low stress intensity factor range ΔK th than as-received steel specimens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.E. Alban, Number 1 Gear Failure-Tooth Bending Fatigue, SAE Paper 841088, 1988

  2. J.I. Woods, S.R. Daniewicz, and R. Nellums, Increasing the Fatigue Strength of Carburized Spur Gear Teeth by Presetting, Int. J. Fatigue, 1999, 21(6), p 549–556

    Article  Google Scholar 

  3. S.K. Akay, M. Yazici, A. Bayram, and A. Avinc, Fatigue Life Behaviour of the Dual-Phase Low Carbon Steel Sheets, J. Mater. Process. Technol., 2009, 209, p 3358–3365

    Article  CAS  Google Scholar 

  4. S. Farfan, C. Rubio-Gonzales, T. Cervantes-Hernandez, and G. Mesmacque, High Cycle Fatigue, Low Cycle Fatigue and Failure Modes of a Carburized Steel, Int. J. Fatigue, 2004, 26, p 673–678

    Article  CAS  Google Scholar 

  5. Y. Liu, M. Wang, J. Shi, W. Hui, G. Fan, and H. Dong, Fatigue Properties of Two Case Hardening Steels After Carburization, Int. J. Fatigue, 2009, 31, p 292–299

    Article  CAS  Google Scholar 

  6. S.Y. Sirin, K. Sirin, and E. Kaluc, Effect of the Ion Nitriding Surface Hardening Process on Fatigue Behavior of AISI, 4340 Steel, Mater. Charact., 2008, 59, p 351–358

    Article  CAS  Google Scholar 

  7. M.A. Terres, S.B. Mohamed, and H. Sidhom, Influence of Ion Nitriding on Fatigue Strength of Low-Alloy (42CrMo4) Steel: Experimental Characterization and Predictive Approach, Int. J. Fatigue, 2010, 32, p 1795–1804

    Article  CAS  Google Scholar 

  8. M.A. Terres, N. Laalai, and H. Sidhom, Effect of Nitriding and Shot-Peening on the Fatigue Behavior of 42CrMo4 Steel: Experimental Analysis and Predictive Approach, Mater. Des., 2012, 35, p 741–748

    Article  CAS  Google Scholar 

  9. M.A. Terres and H. Sidhom, Fatigue Life Evaluation of 42CrMo4 Nitrided Steel by Local Approach: Equivalent Strain-Life-Time, Mater. Des., 2012, 33, p 444–450

    Article  CAS  Google Scholar 

  10. G. Thawari, G. Sundarararjan, and S.V. Joshi, Laser Surface Alloying of Medium Carbon Steel with SiC, Thin Solid Films, 2003, 423, p 41–53

    Article  CAS  Google Scholar 

  11. A. Woldan, J. Kusinski, and E. Tasak, The Microstructure of Carbon Steel Laser-Alloyed with Silicon Carbide, Mater. Chem. Phys., 2003, 81, p 507–509

    Article  CAS  Google Scholar 

  12. S. Buytoz, Microstructural Properties of SiC Based Hardfacing on Low Alloyed Steel, Surf. Coat. Technol., 2006, 200, p 3734–3742

    Article  CAS  Google Scholar 

  13. J. Grum and M. Žnidaršič, Microstructure and Residual Stress Analysis After Laser Cladding of Low-Carbon Steel with Powdery SiC, STELLITE 6, and STELLUNDUM 481, Mater. Sci. Forum, 2003, 426–432, p 2521–2526

    Article  Google Scholar 

  14. R.L. McDaniels, S.A. White, K. Liaw, L. Chen, M.H. McCay, and P.K. Liaw, Effects of a Laser Surface Processing Induced Heat-Affected Zone on the Fatigue Behaviour of AISI, 4340 Steel, Mater. Sci. Eng. A, 2008, 485, p 500–507

    Article  Google Scholar 

  15. L.W. Tsay, M.C. Young, and C. Chen, Fatigue Crack Growth Behavior of Laser-Processed 304 Stainless Steel in Air and Gaseous Hydrogen, Corros. Sci., 2003, 45, p 1985–1997

    Article  CAS  Google Scholar 

  16. L.W. Tsay, C.S. Chung, and C. Chen, Fatigue Crack Propagation of D6AC Laser Welds, Int. J. Fatigue, 1997, 19(1), p 25–31

    Article  CAS  Google Scholar 

  17. B.Q. Yang, K. Zhang, G.N. Chen, G.-X. Luo, and J.H. Xiao, Effect of a Laser Pre-Quenched Steel Substrate Surface on the Crack Driving Force in a Coating-Steel Substrate System, Acta Mater., 2007, 55, p 4349–4358

    Article  CAS  Google Scholar 

  18. EN 10025-2:2004, Hot Rolled Products of Structural Steels—Part 2: Technical Delivery Conditions for Non-alloy Structural Steels, 2004, p 1–34

  19. J. Grum and M. Žnidaršič, Laser Refining of a Surface Layer with Silicon Carbide, Mater. Manuf. Processes, 2008, 23(2), p 216–220

    Article  Google Scholar 

  20. F.T. Cheng, C.T. Kwok, and H.C. Man, Laser Surfacing of S31603 Stainless Steel with Engineering Ceramics for Cavitation Erosion Resistance, Surf. Coat. Technol., 2001, 139, p 14–24

    Article  CAS  Google Scholar 

  21. J.D. Majumdar, A. Kumar, and L. Li, Direct Laser Cladding of SiC Dispersed AISI, 316L Stainless Steel, Tribol. Int., 2009, 42, p 750–753

    Article  Google Scholar 

  22. G.S. Schajer, Measurement of Non-uniform Residual Stresses Using the Hole Drilling Method, J. Eng. Mater. Technol., 1988, 110(4), Part I: p 338–343, Part II: p 344–349

    Google Scholar 

  23. O. Asi, A.C. Can, J. Pineault, and M. Belassel, The Relationship Between Case Depth and Bending Fatigue Strength of Gas Carburized SAE 8620 Steel, Surf. Coat. Technol., 2007, 201, p 5979–5987

    Article  CAS  Google Scholar 

  24. K.S. Chan, Roles of Microstructure in Fatigue Crack Initiation, Int. J. Fatigue, 2010, 32, p 1428–1447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Šturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šturm, R., Žnidaršič, M. & Grum, J. Crack-Growth Behavior of Laser Surface-Alloyed Low-Carbon Steel. J. of Materi Eng and Perform 22, 2542–2549 (2013). https://doi.org/10.1007/s11665-013-0549-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0549-4

Keywords

Navigation