Skip to main content
Log in

An Analytical Model for Evaluation of Bending Angle in Laser Forming of Metal Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, an analytical model is developed to evaluate the bending angle in laser forming of metal sheets. The model is based on the assumption of elastic-bending theory without taking into account plastic deformation during heating and cooling phases. A thermal field is first established, then the thermal component of deformation is calculated and it is used in the strain balance to evaluate the bending angle. The basic idea is that it is possible to use a two-layer model whereas the heated layer thickness depends on the effective temperature distribution along the sheet thickness. A comprehensive experimental study is carried out and the main process parameters, i.e., laser power, scanning speed, sheet thickness, were varied among several levels to evaluate the accuracy of the developed model. Model predictions were confirmed by experimental measurements especially on materials with low conductivity. The established analytical model has demonstrated to provide a great insight into the process parameters effects onto the deformation mechanism within pure temperature gradient mechanism and bucking to temperature gradient transition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

α:

Thermal diffusivity

αb :

Final bending angle

αth :

Coefficient of thermal expansion

ρ:

Material density

A :

Absorption coefficient

B :

Sheet width (orthogonal to scanning direction)

E :

Young modulus

K :

Curvature

L :

Sheet length (along scanning direction)

P :

Laser power

T :

Temperature

T 0 :

Room temperature

T up :

Temperature of irradiated surface

c p :

Heat capacity

d :

Laser beam length (along scanning direction)

k :

Coefficient of thermal conductivity

l :

Laser beam width (orthogonal to scanning direction)

q :

Absorbed power

s :

Sheet thickness

s 1 :

Thickness of heated volume

t :

Interaction time

v :

Laser scanning velocity

References

  1. H. Shen and F. Vollertsen, Modelling of Laser Forming—An Review, Comput. Mater. Sci., 2009, 46(4), p 834–840. doi:10.1016/j.commatsci.2009.04.022

    Article  CAS  Google Scholar 

  2. P. Cheng, Y. Fan, J. Zhang, Y.L. Yao, D.P. Mika, W. Zhang, M. Graham, J. Marte, and M. Jones, Laser Forming of Varying Thickness Plate-Part I: Process Analysis, J. Manuf. Sci. Eng., 2006, 128(3), p 634. doi:10.1115/1.2172280

    Article  Google Scholar 

  3. W. Li and L. Yao, Numerical and Experimental Study of Strain Rate Effects in Laser Forming, J. Manuf. Sci. Eng., 2000, 122(3), p 445–451. doi:10.1115/1.1286731

    Article  Google Scholar 

  4. P. Cheng, Y. Fan, J. Zhang, Y.L. Yao, D.P. Mika, W. Zhang, M. Graham, J. Marte, and M. Jones, Laser Forming of Varying Thickness Plate-Part II: Process Synthesis, J. Manuf. Sci. Eng., 2006, 128(3), p 642. doi:10.1115/1.2162912

    Article  Google Scholar 

  5. F. Vollertsen, An Analytical Model for Laser Bending, Lasers Eng., 1994, 2, p 261–276

    CAS  Google Scholar 

  6. M. Hoseinpour Gollo, S.M. Mahdavian, and H. Moslemi Naeini, Statistical Analysis of Parameter Effects on Bending Angle in Laser Forming Process by Pulsed Nd:YAG Laser, Opt. Laser Technol., 2011, 43(3), p 475–482. doi:10.1016/j.optlastec.2010.07.004

    Article  CAS  Google Scholar 

  7. P.J. Cheng and S.C. Lin, An Analytical Model for the Temperature Field in the Laser Forming of Sheet Metal, J. Mater. Process. Technol., 2000, 101, p 260–267

    Article  Google Scholar 

  8. H. Shen, Y. Shi, Z. Yao, and J. Hu, An Analytical Model for Estimating Deformation in Laser Forming, Comput. Mater. Sci., 2006, 37(4), p 593–598. doi:10.1016/j.commatsci.2005.12.030

    Article  CAS  Google Scholar 

  9. Yau CL, Chan KC, and Lee WB, A New Analytical Model for Laser Bending, LANE, 1997. p 357–366

  10. H. Shen, Z. Yao, Y. Shi, and J. Hu, An Analytical Formula for Estimating the Bending Angle by Laser Forming, J. Mech. Eng. Sci., 2006, 220(2), p 243–247

    Google Scholar 

  11. L. Zhang, Finite Element Modeling Discretization Requirements for the Laser Forming Process, Int. J. Mech. Sci., 2004, 46(4), p 623–637. doi:10.1016/j.ijmecsci.2004.04.001

    Article  Google Scholar 

  12. P. Zhang, B. Guo, D. Shan, and Z. Ji, FE Simulation of Laser Curve Bending of Sheet Metals, J. Mater. Process. Technol., 2007, 184(1–3), p 157–162. doi:10.1016/j.jmatprotec.2006.11.017

    Article  CAS  Google Scholar 

  13. F. Liu, K. Chan, and C. Tang, Numerical Simulation of Laser Forming of Aluminum Matrix Composites with Different Volume Fractions of Reinforcement, Mater. Sci. Eng. A, 2007, 458(1–2), p 48–57. doi:10.1016/j.msea.2006.12.110

    Google Scholar 

  14. Z. Ji and S. Wu, FEM Simulation of the Temperature Field During the Laser Forming of Sheet Metal, J. Mater. Process. Technol., 1998, 74, p 89–95

    Article  Google Scholar 

  15. A.K. Kyrsanidi, T.B. Kermanidis, and S.G. Pantelakis, An Analytical Model for the Prediction of Distortions Caused by the Laser Forming Process, J. Mater. Process. Technol., 2000, 104, p 94–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lambiase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambiase, F. An Analytical Model for Evaluation of Bending Angle in Laser Forming of Metal Sheets. J. of Materi Eng and Perform 21, 2044–2052 (2012). https://doi.org/10.1007/s11665-012-0163-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0163-x

Keywords

Navigation