Skip to main content
Log in

Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Lightweight materials have been widely used in aerospace, automobile industries to meet the requirement of structural weight reduction. Due to their limited plasticity at room temperature, however, lightweight materials always exhibit distinctly poor forming capability in comparison with conventional deep drawing steels. Based on the phenomenon that the superimposed hydrostatic pressure can improve the plasticity of metal, many kinds of double-sided pressure forming processes have been proposed. In the present study, the Gurson-Tvergaard-Needleman (GTN) damage model combined with finite element method is used to investigate the influence of double-sided pressure on the deformation behavior of biaxially stretched AA6111-T4 sheet metal, including nucleation and growth of microvoids, evaluation of stress triaxiality, and so forth. The Marciniak-Kuczynski (M-K) localized necking model is used to predict the right-hand side of the forming limit diagram (FLD) of sheet metal under superimposed double-sided pressure. It is found that the superimposed double-sided pressure has no obvious effect on the nucleation of microvoids. However, the superimposed double-sided pressure can suppress the growth and coalescence of microvoids. The forming limit curve (FLC) of the biaxially stretched AA6111-T4 sheet metal under the superimposed double-sided pressure is improved and the fracture locus shifts to the left. Furthermore, the formability increase value is sensitive to the strain path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Kurihara, Vehicle Weight Reduction Obtained With Lightweight Materials, JSME Int. J. Ser. A Solid Mech. Mater. Eng., 1995, 38(4), p 487–493

    Google Scholar 

  2. J.P. Immarigeon, R.T. Holt, A.K. Koul et al., Lightweight Materials for Aircraft Applications, Mater. Charact., 1995, 35(1), p 41–67

    Article  CAS  Google Scholar 

  3. J.J. Lewandowski and P. Lowhaphandu, Effects of Hydrostatic Pressure on Mechanical Behaviour and Deformation Processing of Materials, Int. Mater. Rev., 1998, 43(4), p 145–187

    Article  CAS  Google Scholar 

  4. A.S. Kao, H.A. Kuhn, O. Richmond et al., Workability of 1045 Spheroidized Steel Under Superimposed Hydrostatic Pressure, Metall. Trans. A, 1989, 20(9), p 1735–1741

    Article  Google Scholar 

  5. W.A. Spitzig and O. Richmond, The Effect of Pressure on the Flow Stress of Metals, Acta Metall., 1984, 32(3), p 457–463

    Article  CAS  Google Scholar 

  6. M. Gotoh, T. Chung, and N. Iwata, Effect of Out-of-Plane Stress on the Forming Limit Strain of Sheet Metals, JSME Int. J. Ser. A Solid Mech. Mater. Eng., 1995, 38(1), p 123–132

    Google Scholar 

  7. L.M. Smith, R.C. Averill, J.P. Lucas et al., Influence of Transverse Normal Stress on Sheet Metal Formability, Int. J. Plast., 2003, 19(10), p 1567–1583

    Article  Google Scholar 

  8. P.H. Matin and L.M. Smith, Practical Limitations to the Influence of Through-Thickness Normal Stress on Sheet Metal Formability, Int. J. Plast., 2005, 21, p 671–690

    Article  Google Scholar 

  9. P.D. Wu, J.D. Embury, D.J. Lloyd et al., Effects of Superimposed Hydrostatic Pressure on Sheet Metal Formability, Int. J. Plast., 2009, 25(9), p 1711–1725

    Article  CAS  Google Scholar 

  10. L.M. Smith, S. Ganeshmurthy, and K. Alladi, Double-Sided High-Pressure Tubular Hydroforming, J. Mater. Process. Technol., 2003, 142(3), p 599–608

    Article  Google Scholar 

  11. N. Jain and J. Wang, Plastic Instability in Dual-Pressure Tube-Hydroforming Process, Int. J. Mech. Sci., 2005, 47(12), p 1827–1837

    Article  Google Scholar 

  12. J. Liu, B. Westhoff, M.A. Ahmetoglu et al., Application of Viscous Pressure Forming (VPF) to Low Volume Stamping of Difficult-to-Form Alloys—Results of Preliminary FEM Simulations, J. Mater. Process. Technol., 1996, 59(1–2 special issue), p 49–58

    Article  Google Scholar 

  13. Z.J. Wang, H. Song, and Z. Wang, Deformation Behavior of TC1 Titanium Alloy Sheet Under Double-Sided Pressure, Trans. Nonferrous Met. Soc. China, 2008, 18(1), p 72–76

    Article  CAS  Google Scholar 

  14. Z.J. Wang, Z. Wang, and M.X. Li, Failure Analysis of Al1060 Sheets Under Double-Sided Pressure Deformation Conditions, Key Eng. Mater., 2007, 353–358(Part 1), p 603–606

    Article  Google Scholar 

  15. F. Ozturk and D. Lee, A New Methodology for Ductile Fracture Criteria to Predict the Forming Limits, J. Mater. Eng. Perform., 2007, 16(2), p 224–228

    Article  CAS  Google Scholar 

  16. C. Vallellano, D. Morales, and F.J. Garcia-Lomas, A Study to Predict Failure in Biaxially Stretched Sheets of Aluminum Alloy 2024-T3, Mater. Manuf. Process., 2008, 23(3–4), p 303–310

    Article  CAS  Google Scholar 

  17. Z.Q. Yu, Z.Q. Lin, and Y.X. Zhao, Evaluation of Fracture Limit in Automotive Aluminum Alloy Sheet Forming, Mater. Des., 2007, 28(1), p 203–207

    Article  CAS  Google Scholar 

  18. W.J. Song, S.W. Kim, J. Kim et al., Analytical and Numerical Analysis of Bursting Failure Prediction in Tube Hydroforming, J. Mater. Process. Technol., 2005, 164, p 1618–1623

    Article  Google Scholar 

  19. M. Jain, J. Allin, and D.J. Lloyd, Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet, Int. J. Mech. Sci., 1999, 41, p 1273–1288

    Article  Google Scholar 

  20. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32(1), p 157–169

    Article  Google Scholar 

  21. K.C. Liao, Applications of Anisotropic Yield Criteria to Porous Sheet Metal Forming Simulations, Mater. Des., 2008, 29(5), p 1000–1010

    Article  CAS  Google Scholar 

  22. W.B. Lievers, A.K. Pilkey, and D.J. Lloyd, Using Incremental Forming to Calibrate a Void Nucleation Model for Automotive Aluminum Sheet Alloys, Acta Mater., 2004, 52(10), p 3001–3007

    Article  CAS  Google Scholar 

  23. Z. Chen and X. Dong, The GTN Damage Model Based on Hill’48 Anisotropic Yield Criterion and Its Application in Sheet Metal Forming, Comput. Mater. Sci., 2009, 44(3), p 1013–1021

    Article  CAS  Google Scholar 

  24. V. Uthaisangsuk, U. Prahl, S. Munstermann et al., Experimental and Numerical Failure Criterion for Formability Prediction in Sheet Metal Forming, Comput. Mater. Sci., 2008, 43(1), p 43–50

    Article  CAS  Google Scholar 

  25. A.A. Zadpoor, J. Sinke, and R. Benedictus, Formability Prediction of High Strength Aluminum Sheets, Int. J. Plast., 2009, 25(12), p 2269–2297

    Article  CAS  Google Scholar 

  26. Z. Marciniak, K. Kuczynski, and T. Pokora, Influence of the Plastic Properties of a Material on the Forming Limit Diagram for Sheet Metal in Tension, Int. J. Mech. Sci., 1973, 15(10), p 789–800

    Article  Google Scholar 

  27. S.G. Xu and K.J. Weinmann, On predicting Forming Limits Using Hill’s Yield Criteria, J. Mater. Eng. Perform., 2000, 9(2), p 174–182

    Article  CAS  Google Scholar 

  28. A. Assempour, R. Hashemi, K. Abrinia et al., A Methodology for Prediction of Forming Limit Stress Diagrams Considering the Strain Path Effect, Comput. Mater. Sci., 2009, 45(2), p 195–204

    Article  CAS  Google Scholar 

  29. S. Ahmadi, A.R. Eivani, and A. Akbarzadeh, An Experimental and Theoretical Study on the Prediction of Forming Limit Diagrams Using New BBC Yield Criteria and M-K Analysis, Comput. Mater. Sci., 2009, 44(4), p 1272–1280

    Article  CAS  Google Scholar 

  30. A. Needleman and N. Triantafyllidis, Void Growth and Local Necking in Biaxially Stretched Sheets, J. Eng. Mater. Technol. (Trans. ASME), 1978, 100(2), p 164–169

    Article  Google Scholar 

  31. C.H.M. Simha, R. Grantab, and M.J. Worswick, Computational Analysis of Stress-Based Forming Limit Curves, Int. J. Solids Struct., 2007, 44(25–26), p 8663–8684

    Article  Google Scholar 

  32. D. Banabic and S. Soare, On the Effect of the Normal Pressure Upon the Forming Limit Strains, Proceedings Numisheet 2008, P. Hora, Ed., Switzerland (2008)

  33. R. Hill, A Theory of Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. A, 1927, 193, p 281–297

    Google Scholar 

  34. A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490

    Article  Google Scholar 

  35. ABAQUS Analysis User’s Manual (Version 6.7) (2007)

  36. C.C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol. Trans. ASME, 1980, 102(3), p 249–256

    Article  Google Scholar 

  37. N. Aravas, On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models, Int. J. Numer. Methods Eng., 1987, 24(7), p 1395–1416

    Article  Google Scholar 

  38. Y.B. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72(7), p 1049–1069

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Science Foundation of China (No. 50805034) and the postdoctoral foundation of China (No. 20100471028) for the support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, Z. & Meng, Q. Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal. J. of Materi Eng and Perform 21, 429–436 (2012). https://doi.org/10.1007/s11665-011-9941-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9941-0

Keywords

Navigation