Skip to main content
Log in

Influence of Combined Severe Plastic Deformation and Sheet Extrusion Process on the Superplastic Formability of AA 5083 Aluminum Alloy Assessed by Free Bulge Test

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A combination of two forming operations is considered for producing metal sheets with improved mechanical properties. As the first operation, a newly introduced severe plastic deformation method called dual equal channel lateral extrusion (DECLE) was performed at 300 °C for different passes on the AA 5083 aluminum blocks. Following the DECLE operation, sheet extrusion was conducted to convert the bulk samples, severely deformed through various passes, into 1.8-mm-thick sheets. Mechanical properties of the processed specimens, after each step of deformation, were examined using tensile and shear punch tests. It was found that the material after three passes of DECLE and also the corresponding forwardly extruded sheet presented the greatest strength. In order to evaluate the biaxial formability of the sheets, gas bulge forming tests were conducted using a PLC-controlled gas circuit. It was shown that the material processed via three passes of DECLE operation and extrusion demonstrated the maximum biaxial superplastic formability with an effective strain associated with 400% uniaxial elongation. This sheet specimen also required the minimum forming time, coinciding with a strain rate of 4 × 10−4 s−1, which is higher than strain rate for the sheet extruded from the annealed sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Evin, M. Tomáš, J. Kmec, S. Németh, B. Katalinic, and E. Wessely, The Deformation Properties of High Strength Steel Sheets for Auto-body Components, Proc. Eng., 2014, 69, p 758–767

    Article  CAS  Google Scholar 

  2. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens, The Evolution of Technology for Materials Processing over the Last 50 Years: The Automotive Examples, J. Min. Met. Mater. Soc., 2007, 59, p 48–57

    Article  CAS  Google Scholar 

  3. A. Hassani and M. Zabihi, High Strain Rate Superplasticity in a Nano-structured Al-Mg/Sicp Composite Severely Deformed by Equal Channel Angular Extrusion, Mater. Des., 2012, 39, p 140–150

    Article  CAS  Google Scholar 

  4. C. Cepeda-Jiménez, J. García-Infanta, O. Ruano, and F. Carreño, High Strain Rate Superplasticity at Intermediate Temperatures of the Al 7075 Alloy Severely Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2011, 509, p 9589–9597

    Article  Google Scholar 

  5. H. Lin, J. Huang, and T. Langdon, Relationship between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP, Mater. Sci. Eng. A, 2005, 402, p 250–257

    Article  Google Scholar 

  6. F. Liu, Z. Ma, and F. Zhang, High Strain Rate Superplasticity in a Micro-Grained Al-Mg-Sc Alloy with Predominant High Angle Grain Boundaries, J. Mater. Sci. Technol., 2012, 28, p 1025–1030

    Article  CAS  Google Scholar 

  7. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, and R. Kaibyshev, Grain Refinement in Aluminum Alloy 2219 during ECAP at 250 °C, Mater. Sci. Eng. A, 2008, 473, p 297–305

    Article  Google Scholar 

  8. M.H. Farshidi and M. Kazeminezhad, Deformation Behavior of 6061 Aluminum Alloy Through Tube Channel Pressing: Severe Plastic Deformation, J. Mater. Eng. Perform., 2012, 21, p 2099–2105

    Article  CAS  Google Scholar 

  9. S. Sepahi-Boroujeni and F. Fereshteh-Saniee, Expansion Equal Channel Angular Extrusion, as a Novel Severe Plastic Deformation Technique, J. Mater. Sci., 2015, 50, p 3908–3919

    Article  CAS  Google Scholar 

  10. X. Wang, M. Wu, W. Ma, Y. Lu, and S. Yuan, Achieving Superplasticity in AZ31 Magnesium Alloy Processed by Hot Extrusion and Rolling, J. Mater. Eng. Perform., 2016, 25(1), p 64–67

    Article  CAS  Google Scholar 

  11. K.-T. Park, H.-J. Lee, C.S. Lee, B. Du Ahn, H.S. Cho, and D.H. Shin, Effect of ECAP Strain on Deformation Behavior at Low Temperature Superplastic Regime of Ultrafine Grained 5083 Al Alloy Fabricated by ECAP, Mater. Trans., 2004, 45, p 958–963

    Article  CAS  Google Scholar 

  12. H. Akamatsu, T. Fujinami, Z. Horita, and T.G. Langdon, Influence of Rolling on the Superplastic Behavior of an Al-Mg-Sc Alloy After ECAP, Scr. Mater., 2001, 44, p 759–764

    Article  CAS  Google Scholar 

  13. Y. Yuan, A. Ma, X. Gou, J. Jiang, F. Lu, D. Song, and Y. Zhu, Superior Mechanical Properties of ZK60 mg Alloy Processed by Equal Channel Angular Pressing and Rolling, Mater. Sci. Eng. A, 2015, 630, p 45–50

    Article  CAS  Google Scholar 

  14. F. Lu, A. Ma, J. Jiang, J. Chen, D. Song, Y. Yuan, J. Chen, and D. Yang, Enhanced Mechanical Properties and Rolling Formability of Fine-Grained Mg-Gd-Zn-Zr Alloy Produced by Equal-Channel Angular Pressing, J. Alloys Compd., 2015, 643, p 28–33

    Article  CAS  Google Scholar 

  15. B. Talebanpour, R. Ebrahimi, and K. Janghorban, Microstructural and Mechanical Properties of Commercially Pure Aluminum Subjected to Dual Equal Channel Lateral Extrusion, Mater. Sci. Eng. A, 2009, 527, p 141–145

    Article  Google Scholar 

  16. W. Guo, Q. Wang, B. Ye, M. Liu, T. Peng, X. Liu, and H. Zhou, Enhanced Microstructure Homogeneity and Mechanical Properties of AZ31 Magnesium Alloy by Repetitive Upsetting, Mater. Sci. Eng. A, 2012, 540, p 115–122

    Article  CAS  Google Scholar 

  17. N. Fakhar, F. Fereshteh-Saniee, and R. Mahmudi, Significant Improvements in Mechanical Properties of AA5083 Aluminum Alloy Using Dual Equal Channel Lateral Extrusion, Trans. Nonferrous Met. Soc. China, 2016, 26, p 3081–3090

    Article  CAS  Google Scholar 

  18. N. Fakhar, F. Fereshteh-Saniee, and R. Mahmudi, High Strain-Rate Superplasticity of Fine-and Ultrafine-Grained AA5083 Aluminum Alloy at Intermediate Temperatures, Mater. Des., 2015, 85, p 342–348

    Article  CAS  Google Scholar 

  19. V. Karthik, K. Laha, P. Parameswaran, K. Chandravathi, K. Kasiviswanathan, T. Jayakumar, and B. Raj, Tensile Properties of Modified 9Cr-1Mo Steel by Shear Punch Testing and Correlation with Microstructures, Int. J. Press. Vessels Pip., 2011, 88, p 375–383

    Article  CAS  Google Scholar 

  20. M. Karami and R. Mahmudi, Hot Shear Deformation Constitutive Analysis of an Extruded Mg-6Li-1Zn Alloy, Mater. Lett., 2012, 81, p 235–238

    Article  CAS  Google Scholar 

  21. P. Sellamuthu, P. Collins, P. Hodgson, and N. Stanford, Correlation of Tensile Test Properties with Those Predicted by the Shear Punch Test, Mater. Des., 2013, 47, p 258–266

    Article  CAS  Google Scholar 

  22. F.K. Abu-Farha, Integrated Approach to the Superplastic Forming of Magnesium Alloys. Doctoral Thesis, University of Kentucky, 2007

  23. A.A. Kruglov, V.R. Ganieva, and F.U. Enikeev, Determination of Superplastic Properties from the Results of Technological Experiments, Adv. Eng. Softw., 2017, 112, p 54–65

    Article  Google Scholar 

  24. F.K. Abu-Farha, N.A. Shuaib, M.K. Khraisheh, and K.J. Weinmann, Limiting Strains of Sheet Metals Obtained by Pneumatic Stretching at Elevated Temperatures, CIRP Ann. Manuf. Technol., 2008, 57, p 275–278

    Article  Google Scholar 

  25. S.Y. Chang, B.D. Ahn, S.-K. Hong, S. Kamado, Y. Kojima, and D.H. Shin, Tensile Deformation Characteristics of a Nano-Structured 5083 Al Alloy, J. Alloys Compd., 2005, 386, p 197–201

    Article  CAS  Google Scholar 

  26. R. Guduru, K. Darling, R. Kishore, R. Scattergood, C. Koch, and K. Murty, Evaluation of Mechanical Properties Using Shear–Punch Testing, Mater. Sci. Eng. A, 2005, 395, p 307–314

    Article  Google Scholar 

  27. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H. Kim, Microstructural Homogeneity, Texture, Tensile and Shear Behavior of AM60 Magnesium Alloy Produced by Extrusion and Equal Channel Angular Pressing, Mater. Des., 2013, 43, p 31–39

    Article  CAS  Google Scholar 

  28. N. Stepanov, A. Kuznetsov, G. Salishchev, G. Raab, and R. Valiev, Effect of Cold Rolling on Microstructure and Mechanical Properties of Copper Subjected to ECAP with Various Numbers of Passes, Mater. Sci. Eng. A, 2012, 554, p 105–115

    Article  CAS  Google Scholar 

  29. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev, Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling, Mater. Sci. Eng. A, 2003, 343, p 43–50

    Article  Google Scholar 

  30. M. Cabibbo, M. El Mehtedi, L. Barone, E. Prados, and M. Ferrante, Mechanical Properties at High Temperature of an AA3004 After ECAP and Cold/Hot Rolling, Rev. Adv. Mater. Sci., 2010, 25, p 183–188

    CAS  Google Scholar 

  31. Q. Li, E.Y. Chen, D.R. Bice, and D.C. Dunand, Transformation Superplasticity of Cast Titanium and Ti-6Al-4V, Metall. Mater. Trans. A, 2007, 38, p 44–53

    Article  Google Scholar 

  32. S.R. Babu, V.S. Kumar, L. Karunamoorthy, and G.M. Reddy, Investigation on the Effect of Friction Stir Processing on the Superplastic Forming of AZ31B Alloy, Mater. Des., 2014, 53, p 338–348

    Article  Google Scholar 

  33. B. Talebanpour and R. Ebrahimi, Upper-Bound Analysis of Dual Equal Channel Lateral Extrusion, Mater. Des., 2009, 30, p 1484–1489

    Article  CAS  Google Scholar 

  34. Z. Horita, M. Furukawa, M. Nemoto, A. Barnes, and T. Langdon, Superplastic Forming at High Strain Rates After Severe Plastic Deformation, Acta Mater., 2000, 48, p 3633–3640

    Article  CAS  Google Scholar 

  35. D. Sorgente, S.L. Campanelli, A. Stecchi, and N. Contuzzi, Strain Behavior of a Friction Stirr Processed Superplastic Aluminum Alloy Sheet During Free Inflation Tests, J. Manuf. Process., 2016, 23, p 287–295

    Article  Google Scholar 

Download references

Acknowledgments

The research work reported here was partially supported by the Iran National Science Foundation (INSF) under Grant No. 92014140. The authors appreciate the financial support from this organization. The EBSD images were prepared by contribution of Dr. Amir Momeni and Dr. S. Mandal. The authors also appreciate their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fereshteh-Saniee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereshteh-Saniee, F., Fakhar, N. & Mahmudi, R. Influence of Combined Severe Plastic Deformation and Sheet Extrusion Process on the Superplastic Formability of AA 5083 Aluminum Alloy Assessed by Free Bulge Test. J. of Materi Eng and Perform 28, 6682–6691 (2019). https://doi.org/10.1007/s11665-019-04384-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04384-6

Keywords

Navigation