Skip to main content
Log in

Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled component with permanent mold are optimized using a combining artificial neural network and genetic algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process parameters with the fitness function based on the trained ANN model. Then, by applying the optimized parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were found in the component. The results indicate that the combining ANN/GA method is an effective tool for the process optimization of LPDC, and they also provide valuable reference on choosing the right process parameters for LPDC thin-walled aluminum alloy casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Zhang, D.M. Maijer, and S.L. Cockcroft, Development of a 3-D Thermal Model of the Low-Pressure Die-Cast (LPDC) Process of A356 Aluminum Alloy Wheels, Mater. Sci. Eng. A, 2007, 464, p 295–305

    Article  Google Scholar 

  2. A.E. Miller and D.M. Maijer, Investigations of Erosive-Corrosive Wear in the Low Pressure Die Casting of Aluminum A356, Mater. Sci. Eng. A, 2006, 435–436, p 100–111

    Google Scholar 

  3. P.H. Fu, A.A. Luo, H.Y. Jiang, and L.M. Peng, Low-Pressure Die Casting of Magnesium Alloy AM50: Response to Process Parameters, J. Mater. Process. Technol., 2008, 205, p 224–234

    Article  CAS  Google Scholar 

  4. J. You, Y.W. Wang, N.X. Feng, and M.S. Yang, Preparation of Casting Alloy ZL101 with Coarse Aluminum-Silicon Alloy, Trans. Nonferrous Met. Soc. China, 2008, 18, p 116–120

    Article  CAS  Google Scholar 

  5. Z. Fan, X. Fang, and S. Ji, Microstructure and Mechanical Properties of Rheo-Diecast (RDC) Aluminum Alloys, Mater. Sci. Eng. A, 2005, 412, p 298–306

    Article  Google Scholar 

  6. A. Mitrasinovic, F.C. Robles Hernandez, and M. Djurdjevic, On-Line Prediction of the Melt Hydrogen and Casting Porosity Level in 319 Aluminum Alloy Using Thermal Analysis, Mater. Sci. Eng., 2006, 428, p 41–46

    Article  Google Scholar 

  7. S.P. Wu, C.Y. Li, and J.J. Guo, Numerical Simulation and Experimental Investigation of Two Filling Methods in Vertical Centrifugal Casting, Trans. Nonferrous Met. Soc. China, 2006, 16, p 1035–1040

    Article  Google Scholar 

  8. T.R. Vijayaram, S. Sulaiman, and A.M.S. Hamouda, Numerical Simulation of Casting Solidification in Permanent Metallic Molds, J. Mater. Process. Technol., 2006, 178, p 29–33

    Article  Google Scholar 

  9. L.A. Dobrzanski, M. Krupinski, and J.H. Sokolowski, Computer Aided Classification of Flaws Occurred During Casting of Aluminum, J. Mater. Process. Technol., 2005, 167, p 456–462

    Article  CAS  Google Scholar 

  10. S. Deng and Y. Hwang, Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems, Int. J. Heat Mass Transf., 2006, 49, p 4732–4750

    Article  CAS  Google Scholar 

  11. Y.C. Liang, D.P. Feng, G.R. Liu, X.W. Yang, and X. Han, Neural Identification of Rock Parameters Using Fuzzy Adaptive Learning Parameters, Comput. Struct., 2003, 81, p 2373–2382

    Article  Google Scholar 

  12. L.Q. Zhang, L.X. Li, H. Ju, and B.W. Zhu, Inverse Identification of Interfacial Heat Transfer Coefficient Between the Casting and Metal Mold Using Neural Network, Energy Convers. Manag., 2010, 51, p 1898–1904

    Article  CAS  Google Scholar 

  13. F. Pettersson, N. Chakraborti, and H. Saxen, A Genetic Algorithm Based Multi-Objective Neural Net Applied to Noisy Blast Furnace Data, Appl. Soft Comput., 2007, 7, p 387–397

    Article  Google Scholar 

  14. F. Pettersson, A. Biswas, and P.K. Sen, Analyzing Leaching Data for Low-Grade Manganese Ore Using Neural Nets and Multiobjective Genetic Algorithms, Mater. Manuf. Process., 2009, 24, p 320–330

    Article  CAS  Google Scholar 

  15. C.R. Chen and H.S. Ramaswamy, Modeling and Optimization of Variable Retort Temperature (VRT) Thermal Processing Using Coupled Neural Networks and Genetic Algorithms, J. Food Eng., 2002, 53, p 209–220

    Article  Google Scholar 

  16. H. Kurtaran, B. Ozcelik, and T. Erzurumlu, Warpage Optimization of a Bus Ceiling Lamp Base Using Neural Network Model and Genetic Algorithm, J. Mater. Process. Technol., 2005, 169, p 314–319

    Article  CAS  Google Scholar 

  17. W. Paszkowicz, Genetic Algorithms, a Nature-Inspired Tool: Survey of Applications in Materials Science and Related Fields, Mater. Manuf. Process., 2009, 24, p 174–197

    Article  CAS  Google Scholar 

  18. C.A.C. Coello and R.L. Becerra, Evolutionary Multiobjective Optimization in Materials Science and Engineering, Mater. Manuf. Process., 2009, 24, p 119–129

    Article  CAS  Google Scholar 

  19. K. Mitra, Genetic Algorithms in Polymeric Material Production, Design, Processing and Other Applications: A Review, Int. Mater. Rev., 2008, 53, p 275–297

    Article  CAS  Google Scholar 

  20. N. Chakraborti, Genetic Algorithms in Materials Design and Processing, Int. Mater. Rev., 2004, 49, p 246–260

    Article  CAS  Google Scholar 

  21. C.Y. Shen, L.X. Wang, and Q. Li, Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method, J. Mater. Process. Technol., 2007, 183, p 412–418

    Article  CAS  Google Scholar 

  22. A. Krimpenis, P.G. Benardos, G.C. Vosniakos, and A. Koukouvitaki, Simulation-Based Selection of Optimum Pressure Die-Casting Process Parameters Using Neural Nets and Genetic Algorithms, Int. J. Adv. Manuf. Technol., 2006, 27, p 509–517

    Article  Google Scholar 

  23. J.H. Kuo, F.L. Hsu, and W.S. Hwang, Development of an Interactive Simulation System for the Determination of the Pressure-Time Relationship During the Filling in a Low Pressure Die Casting Process, Sci. Technol. Adv. Mater., 2001, 2, p 131–145

    Article  CAS  Google Scholar 

  24. X. Han, D. Xu, and G.R. Liu, A Computational Inverse Technique for Material Characterization of a Functionally Graded Cylinder Using a Progressive Neural Network, Neurocomputing, 2003, 51, p 341–360

    Article  Google Scholar 

  25. V.R. Adineh, C. Aghanajafi, G.H. Dehghan, and S. Jelvani, Optimization of the Operational Parameters in a FAST AXIAL Flow CW CO2 Laser Using Artificial Neural Networks and Genetic Algorithms, Opt. Laser Technol., 2008, 40, p 1000–1007

    Article  CAS  Google Scholar 

  26. L.Q. Zhang, L.X. Li, and B.W. Zhu, Simulation Study on the LPDC Process for Thin-Walled Aluminum Alloy Casting, Materials and Manufacturing Process, 2009, 24, p 1349–1353

    Article  CAS  Google Scholar 

  27. L.Y. Zhang, Y.H. Jiang, Z. Ma, and S.F. Shan, Effect of Cooling Rate on Solidified Microstructure and Mechanical Properties of Aluminium-A356 Alloy, J. Mater. Process. Technol., 2008, 207, p 107–111

    Article  CAS  Google Scholar 

  28. H. Drar and I.L. Svensson, Improvement of Tensile Properties of Al-Si Alloys Through Directional Solidification, Mater. Lett., 2007, 61, p 392–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from Hunan Science Fund for Distinguished Young Scholars No. 09JJ1007, International Cooperation and Exchanges MOST No.2008DFA50990 and the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body No. 60870005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luoxing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Li, L., Wang, S. et al. Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method. J. of Materi Eng and Perform 21, 492–499 (2012). https://doi.org/10.1007/s11665-011-9933-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9933-0

Keywords

Navigation