Skip to main content

Advertisement

Log in

Analysis of Titanium-Coated Glass and Imidex (PI) Laser Bonded Samples

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based on previous results of bond strength, scanning electron microscopy(SEM)/energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (for thin film thickness in the range of 50 to 200 nm range), it is expected for a moderate film thickness of titanium (over 50 nm) for the system of sputtered Ti-coated glass/polymer two factors play important roles in getting strong bond between Ti/Polyimide interface: (i) mechanical interlocking property and (ii) chemical bond formation such as Ti-C, Ti-O between Ti and imidex (PI) film. In this study, a systematic investigation has been conducted to understand the effects of thin films on bond quality and on failure mechanism of the interface between 400 nm sputtered Ti-coated glass/imidex (PI) system. This article basically studies if for this higher film thickness the failure pattern and bond strength are consistent with the previous data. From previous studies (for thin film thickness of 50 to 200 nm) the conclusion extracted is thin film with thickness of less than 50 nm exhibited low bond strength when compared to film thickness over 50 nm and from the results obtained in this study it is concluded that the bond reliability and failure modes of sputtered Ti film on glass are consistent even for a film thickness as high as 400 nm and three types of failure modes are found : (i) cohesive failure mode, (ii) Ti/glass interface failure mode, and (iii) glass failure mode. The roughness value for this coating thickness is 17 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Sultana, G. Newaz, G.L. Georgiev, R.J. Baird, G.W. Auner, R. Patwa, and H.J. Herfurth, A Study of Titanium Thin Films in Transmission Laser Micro-Joining of Titanium-Coated Glass to Polyimide, Thin Solid Films, 2010, 518, p 2632–2636

    Article  CAS  Google Scholar 

  2. A. Mian, J. Law, and G. Newaz, Analysis of Laser Fabricated Microjoint Performance in Cerebrospinal Fluid Using a Computational Approach, J. Mech. Behav. Biomed. Mater., 2010, 4, p 117–124

    Article  Google Scholar 

  3. A. Mian, T. Sultana, G. Auner, and G. Newaz, Bonding Mechanisms of Laser-Fabricated Titanium/Polyimide and Titanium Coated Glass/Polyimide Microjoints, Surf. Interface Anal., 2007, 39, p 506–511

    Article  CAS  Google Scholar 

  4. D.G. Georgiev, R.J. Baird, G. Newaz, G. Auner, R. Witte, and H. Herfurth, An XPS Study of Laser-Fabricated Polyimide/Titanium Interfaces, Appl. Surf. Sci., 2004, 236, p 71–76

    Article  CAS  Google Scholar 

  5. D.G. Georgiev, T. Sultana, A. Mian, G. Auner, H. Herfurth, R. Witte, and G. Newaz, Laser Fabrication and Characterization of Sub-Millimeter Joints Between Polyimide and Ti-Coated Borosilicate Glass, J. Mater. Sci., 2005, 40, p 5641–5647

    Article  CAS  Google Scholar 

  6. A. Mian, G. Newaz, L. Vendra, N. Rahman, D.G. Georgiev, G. Auner, R. Witte, and H. Herfurth, Laser Bonded Microjoints Between Titanium and Polyimide for Applications in Medical Implants, J. Mater. Sci. Mater. Med., 2005, 16, p 229–237

    Article  CAS  Google Scholar 

  7. G. Newaz, A. Mian, T. Sultana, T. Mahmood, D.G. Georgiev, G. Auner, R. Witte, and H. Herfurth, A Comparison Between Glass/Polyimide And Titanium/Polyimide Microjoint Performances in Cerebrospinal Fluid, J. Biomed. Mater. Res. A, 2006, 79A, p 159–165

    Article  CAS  Google Scholar 

  8. M.C. Burrell, P.J. Codella, J.A. Fontana, and J.J. Chera, Interfacial Reactions at Copper Surfaces Coated with Polymer-Films, J. Vac. Sci. Technol. A, 1989, 7, p 1778–1783

    Article  CAS  Google Scholar 

  9. T.G. Chung, Y.H. Kim, and J. Yu, An Auger Study on the Interaction of Cu and Cr Films with Polyimide, J. Adhes. Sci. Technol., 1994, 8, p 41–51

    Article  CAS  Google Scholar 

  10. S.R. Peddada, I.M. Robertson, and H.K. Birnbaum, Effects of Thermal Cycling in a Reducing Atmosphere on Metal/Polyimide Interfaces, J. Mater. Res., 1994, 9, p 504–514

    Article  CAS  Google Scholar 

  11. R.R. Tummala, Microelectronics Packaging Handbook, VNR, New York, 1989

    Google Scholar 

  12. F.S. Ohuchi and S.C. Freilich, Metal Polyimide Interface—A Titanium Reaction-Mechanism, J. Vac. Sci. Technol. A, 1986, 4, p 1039–1045

    Article  CAS  Google Scholar 

  13. M. Gjuric and S. Schagerl, Gold Prostheses for Ossiculoplasty, Am. J. Otol., 1998, 19, p 273–276

    CAS  Google Scholar 

  14. M. Bosetti, A. Masse, E. Tobin, and M. Cannas, Silver Coated Materials for External Fixation Devices: In Vitro Biocompatibility and Genotoxicity, Biomaterials, 2002, 23, p 887–892

    Article  CAS  Google Scholar 

  15. C. de Haro, R. Mas, G. Abadal, J. Munoz, F. Perez-Murano, and C. Dominguez, Electrochemical Platinum Coatings for Improving Performance of Implantable Microelectrode Arrays, Biomaterials, 2002, 23, p 4515–4521

    Article  Google Scholar 

  16. M.J. Niebauer, B. Wilkoff, Y. Yamanouchi, T. Mazgalev, K. Mowrey, and P. Tchou, Iridium Oxide-Coated Defibrillation Electrode—Reduced Shock Polarization and Improved Defibrillation Efficacy, Circulation, 1997, 96, p 3732–3736

    CAS  Google Scholar 

  17. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R, 2004, 47, p 49–121

    Article  Google Scholar 

  18. K.K. Lee, J.P. He, A. Singh, S. Massia, G. Ehteshami, B. Kim, and G. Raupp, Polyimide-Based Intracortical Neural Implant with Improved Structural Stiffness, J. Micromech. Microeng., 2004, 14, p 32–37

    Article  CAS  Google Scholar 

  19. S. Metz, R. Holzer, and P. Renaud, Polyimide-Based Microfluidic Devices, Lab Chip, 2001, 1, p 29–34

    Article  CAS  Google Scholar 

  20. N.J. Lubna, Laser Bonding Characteristics of Sputtered Titanium on Glass With Polymeric Films, Material Science and Engineering, Wayne State University, Detroit, 2009, p 1–189

  21. M.J. Wild, A. Gillner, and R. Poprawe, Locally Selective Bonding of Silicon and Glass with Laser, Sens. Actuators A, 2001, 93, p 63–69

    Article  Google Scholar 

  22. M. Lu, Z. Qian, W. Ren, S. Liu, and D. Shangguan, Investigation of Electronic Packaging Materials by Using a 6-Axis Mini Thermo-Mechanical Tester, Int. J. Solids Struct., 1999, 36, p 65–78

    Article  Google Scholar 

  23. R.M. Fisher, J.Z. Duan, and A.G. Fox, Structures and Stresses in Nanograin Thin Metal Films, Mater. Sci. Eng., 1989, A117, p 3–9

    CAS  Google Scholar 

  24. M.S. Mayeed, N.J. Lubna, G.W. Auner, G.M. Newaz, R. Patwa, and H. Herfurth, Finite Element Thermal Analysis for Microscale Laser Joining of Nanoscale Coatings of Titanium on Glass/Polymide System, IMECE2009, 2009, ASME International Mechanical Engineering Congress and Exposition, November 13-19, Lake Buena Vista, Florida, USA.

  25. R. Estevez and E.V.D. Giessen, Modeling and Computational Analysis of Fracture of Glassy Polymers, Adv. Polym. Sci., 2005, 188, p 195–234

    Article  CAS  Google Scholar 

  26. R.N. Haward and R.J. Young, The Physics of Glassy Polymers, Chapman & Hall, 1997

  27. D. Hulsenberg, Glasses for Microsystems Technology, Microelectr. J., 1997, 28, p 419–432

    Article  CAS  Google Scholar 

  28. I. Narisawa and A.F. Yee, Materials Science and Technology: A Comprehensive Treatment, VCH, Weinheim, 1993

    Google Scholar 

  29. C. Girardeaux, G. Chambaud, and M. Delamar, The Polyimide (PMDA-ODA) Titanium Interface. 3. A Theoretical Study, J. Electron Spectrosc., 1996, 77, p 209–220

    Article  CAS  Google Scholar 

  30. H.F. Franzen, M.X. Umaña, J.R. McCreary, and R.J. Thorn, XPS Spectra of Some Transition Metal and Alkaline Earth Monochalcogenides, J. Solid State Chem., 1976, 18, p 363–368

    Article  CAS  Google Scholar 

  31. H. Ihara, Y. Kumashiro, A. Itoh, and K. Maeda, Some Aspects of ESCA Spectra of Single Crystals and Thin Films of Titanium Carbide, Jpn. J. Appl. Phys., 1973, 12, p 1462–1463

    Article  CAS  Google Scholar 

  32. A. Turkovic and D. Sokcevic, X-Ray Photoelectron-Spectroscopy of Thermally Treated TiO2 Thin-Films, Appl. Surf. Sci., 1993, 68, p 477–479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Michigan Economic Development Corp. (MEDC) and Institute for Manufacturing Research (IMR), WSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusrat Lubna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubna, N., Newaz, G. Analysis of Titanium-Coated Glass and Imidex (PI) Laser Bonded Samples. J. of Materi Eng and Perform 21, 266–270 (2012). https://doi.org/10.1007/s11665-011-9900-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9900-9

Keywords

Navigation