Skip to main content

Modeling and Computational Analysis of Fracture of Glassy Polymers

  • Chapter
  • First Online:
Intrinsic Molecular Mobility and Toughness of Polymers II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 188))

Abstract

Although it is recognized that failure of glassy polymers involves crazing and shear yielding, most of the studies of their fracture account for one or the other mechanism. We present a finite element analysis in which crazing and shear yielding are incorporated. Shear yielding is accounted for through the description of a three-dimensional constitutive law of the bulk material, while crazing is modeled by a cohesive surface which comprises the three stages of initiation, thickening, and craze fibril breakdown and related crack formation. The description is able to capture the main features of glassy polymer fracture such as the ductile-to-brittle transition at low rates and the evolution of the toughness with loading rate. In particular, it is demonstrated that the competition between shear yielding and crazing governs the material's toughness. Even if the description of crazing presented here is essentially phenomenological, a cohesive zone formulation is shown to provide a consistent formulation to bridge descriptions of failure at the molecular length scale with analyses performed at the continuum scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ishikawa M, Narisawa I (1977) J Polym Sci 15:1791

    CAS  Google Scholar 

  2. Döll W (1973) Eng Fract Mech 5:229

    Google Scholar 

  3. Fuller KNG, Fox PG, Field JE (1975) Proc R Soc Lond A 341:537

    Google Scholar 

  4. Haward RN, Thackray G (1968) Proc R Soc Lond A 302:453

    Google Scholar 

  5. Boyce MC, Parks DM, Argon AS (1988) Mech Mater 7:15

    Google Scholar 

  6. Wu PD, Van der Giessen E (1993) J Mech Phys Solids 41:427

    CAS  Google Scholar 

  7. Wu PD, Van der Giessen E (1996) Eur J Mech 15:799

    Google Scholar 

  8. Van der Giessen E (1997) Eur J Mech 16:87

    Google Scholar 

  9. Basu S, Van der Giessen E (2002) Int J Plasticity 18:1395

    Article  CAS  Google Scholar 

  10. Argon AS (1973) Philos Mag 28:839

    CAS  Google Scholar 

  11. Arruda EM, Boyce MC (1993) J Mech Phys Solids 41:389

    CAS  Google Scholar 

  12. Raha S, Bowden PB (1972) Polymer 13:174

    Article  CAS  Google Scholar 

  13. Arruda EM, Boyce MC, Jayachandran R (1995) Mech Mater 19:193

    Article  Google Scholar 

  14. Agassant JF, Avenas P, Sergent JPh, Carreau PJ (1991) Polymer processing: principles and modelling. Hanser Gardener, Munich

    Google Scholar 

  15. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  16. Kambour RP (1973) J Polym Sci 7:1

    Google Scholar 

  17. Kausch HH (1987) Polymer fracture, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Kausch HH (ed) (1983) Crazing in polymers. Adv Polym Sci 52–53. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Kausch HH (ed) (1990) Crazing in polymers, vol 2. Adv Polym Sci 91–92. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Mech Mater 32:19

    Article  Google Scholar 

  21. Tijssens MGA, Van der Giessen E, Sluys LJ (2000) Int J Solids Struct 37:7307

    Google Scholar 

  22. Estevez R, Tijssens MGA, Van der Giessen E (2000) J Mech Phys Solids 48:2585

    CAS  Google Scholar 

  23. Argon AS, Hannoosh JG (1977) Philos Mag 36:1195

    CAS  Google Scholar 

  24. Sternstein SS, Ongchin L (1969) Polymer Prepr 10:1117

    CAS  Google Scholar 

  25. Sternstein SS, Myers FA (1973) J Macromol Sci Phys B 8:539

    Google Scholar 

  26. Oxborough RJ, Bowden PB (1973) Philos Mag 28:547

    CAS  Google Scholar 

  27. Ishikawa M, Narisawa I (1983) J Mater Sci 2826

    Google Scholar 

  28. Gearing BP, Anand L (2004) Int J Solids Struct 41:827

    Google Scholar 

  29. Döll W (1983) Adv Polym Sci 52–53:106

    Google Scholar 

  30. Döll W, Könczöl L (1990) Adv Polym Sci 91–92:138

    Google Scholar 

  31. Kramer EJ (1983) Adv Polym Sci 52–53:1

    Google Scholar 

  32. Kramer EJ, Berger LL (1990) Adv Polym Sci 91–92:1

    Google Scholar 

  33. Dugdale DS (1960) J Mech Phys Solids 8:100

    Google Scholar 

  34. Lauterwasser BD, Kramer EJ (1979) Philos Mag A 39:469

    CAS  Google Scholar 

  35. Brown HR, Kramer EJ (1981) J Macromol Sci Phys B19:487

    CAS  Google Scholar 

  36. Van der Giessen E, Lai J (1997) Proceedings of the 10th international conference on deformation, yield and fracture of polymers, Cambridge, 35

    Google Scholar 

  37. Tijssens MGA, Van der Giessen E (2002) Polymer 43:831

    Article  CAS  Google Scholar 

  38. Brown HR, Ward IM (1973) Polymer 14:469

    CAS  Google Scholar 

  39. Marshall GP, Coutts LH, Williams JG (1974) J Mater Sci 9:1409

    Article  CAS  Google Scholar 

  40. Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood, New York

    Google Scholar 

  41. Döll W, Schinker MG, Könczöl L (1979) Int J Fract 15:R145

    Google Scholar 

  42. Pitman GL, Ward IM (1979) Polymer 20:895

    Article  CAS  Google Scholar 

  43. Morgan GP, Ward IM (1977) Polymer 18:87

    Article  CAS  Google Scholar 

  44. Weidman GW, Döll W (1978) Int J Fract 14:R189

    Google Scholar 

  45. Schirrer R (1990) Adv Polym Sci 91–92:215

    Google Scholar 

  46. Brown HR (1991) Macromolecules 24:2752

    CAS  Google Scholar 

  47. Sih GC, Liebowitz H (1968) In: Liebowitz H (ed) Fracture. Academic, San Diego, p 67

    Google Scholar 

  48. Wu S (1990) Polym Eng Sci 30:753

    CAS  Google Scholar 

  49. Rottler J, Robins MO (2002) Phys Rev Lett 89:1955

    Google Scholar 

  50. Rottler J, Robins MO (2003) Phys Rev E 68:118

    Google Scholar 

  51. Hui CY, Ruina A, Creton C, Kramer EJ (1992) Macromolecules 25:3948

    Article  CAS  Google Scholar 

  52. Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450

    Article  CAS  Google Scholar 

  53. Sha Y, Hui CY, Kramer EJ (1999) J Mater Sci 34:3695

    Article  CAS  Google Scholar 

  54. Needleman A (1987) J Appl Mech 54:525

    Article  Google Scholar 

  55. Socrate S, Boyce MC, Lazzeri A (2001) Mech Mater 33:155

    Article  Google Scholar 

  56. Leevers PS (1995) Int J Fract 73:109

    Article  CAS  Google Scholar 

  57. Estevez R, Basu S, Van der Giessen E (2005) Int J Fract 132:249

    Article  CAS  Google Scholar 

  58. Rittel D (1998) Int J Solids Struct 35:2959

    Google Scholar 

  59. Bjerke TW, Li Z, Lambros J (2003) J Mech Phys Solids 51:1147

    CAS  Google Scholar 

  60. Wada H (1992) Eng Fract Mech 41:821

    Google Scholar 

  61. Wada H, Seika M, Kennedy TC, Calder CA, Murase K(1996) Eng Fract Mech 54:805

    Google Scholar 

  62. Rittel D, Maigre H (1996) Mech Mater 23:229

    Article  Google Scholar 

  63. Williams JG, Hodgkinson JM (1981) Proc R Soc Lond A 375:231

    CAS  Google Scholar 

  64. Saad N, Esteves R, Olagnon C, Séguéla R (2005) Proceedings of the 11th international conference of fracture, 4488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Estevez .

Editor information

Hans-Henning Kausch

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Estevez, R., Van der Giessen, E. Modeling and Computational Analysis of Fracture of Glassy Polymers. In: Kausch, HH. (eds) Intrinsic Molecular Mobility and Toughness of Polymers II. Advances in Polymer Science, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136977

Download citation

Publish with us

Policies and ethics