Skip to main content

Advertisement

Log in

Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work investigated the effects of chloride ions and hydrogen-charging on the passivity and pitting corrosion behavior of X80 pipeline steel in a bicarbonate-carbonate solution by electrochemical and photo-electrochemical techniques. It was found that a stable passivity can be established on the steel in the absence and presence of chloride ions. The hydrogen-charging does not alter the transpassive potential, but increases the passive current density. When chloride ions are contained in the solution, pitting corrosion will be initiated. The pitting potential is independent of the hydrogen-charging. Hydrogen-charging would enhance the anodic dissolution and electrochemical activity of the steel, but does not affect the pitting potential, which indicates that the charged hydrogen is not involved in the pitting initiation. However, hydrogen may accelerate the pit growth. Photo illumination could enhance the activity of the steel electrode, resulting in an increase of photo-induced anodic current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Baker Jr., Stress Corrosion Cracking Studies, Integrity Management Program DTRS56-02-D-70036, Department of Transportation, Office of Pipeline Safety, USA, 2004

  2. Canadian National Energy Board, Report of Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines, MH-2-95, November 1996

  3. R.N. Parkins, A Review of Stress Corrosion Cracking of High-Pressure Gas Pipelines, Corrosion 2000, NACE, Houston, 2000 (paper no. 363)

  4. A.Q. Fu, X. Tang, and Y.F. Cheng, Characterization of Corrosion of X70 Pipeline Steel in Thin Electrolyte Layer Under Disbonded Coating by Scanning Kelvin Probe, Corros. Sci., 2009, 51, p 186–190

    Article  CAS  Google Scholar 

  5. X. Tang and Y.F. Cheng, Localized Dissolution Electrochemistry at Surface Irregularities of Pipeline Steel, Appl. Surf. Sci., 2008, 254, p 5199–5205

    Article  CAS  ADS  Google Scholar 

  6. M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate-Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53, p 2831–2836

    Article  CAS  Google Scholar 

  7. C.W. Du, X.G. Li, P. Liang, Z.Y. Liu, G.F. Jia, and Y.F. Cheng, Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil, J. Mater. Eng. Perform., 2009, 18, p 216–220

    Article  CAS  Google Scholar 

  8. F.M. Song, Predicting the Mechanisms and Crack Growth Rates of Pipelines Undergoing SCC at High pH, Corros. Sci., 2009, 51, p 2657–2674

    Article  CAS  Google Scholar 

  9. R.N. Parkins, Predictive Approaches to Stress Corrosion Cracking, Corros. Sci., 1980, 22, p 147–166

    Article  Google Scholar 

  10. R.N. Parkins, Realistic Stress Corrosion Crack Velocities for Life Prediction Estimates, Life Prediction of Corrodible Structures, Vol 1, R.N. Parkins, Ed., NACE International, Houston, TX, 1994, p 97–112

    Google Scholar 

  11. R.N. Parkins, Overview of Intergranular Stress Corrosion Cracking Research Activities, Line Pipe Research Supervisory Committee of the Pipeline Research Committee of the American Gas Association, PR-232-9401, May 1994

  12. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization of Corrosion of Pre-cracked X70 Pipeline Steel in a Concentrated Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52, p 960–968

    Article  CAS  Google Scholar 

  13. R.N. Parkins, Conceptual Understanding and Life Prediction for SCC of Pipelines, Proceedings of Corrosion 96, Research Topical Symposia, P.L. Andresen and R.N. Parkins, Ed., NACE International, Houston, TX, 1996, p 1–17

    Google Scholar 

  14. R.N. Parkins, Prevention and Control of Stress Corrosion Cracking—An Overview, Corrosion 1985, NACE, Houston, 1985 (paper no. 348)

  15. R.N. Parkins and R.R. Fessler, Line Pipe Stress Corrosion Cracking—Mechanisms and Remedies, Corrosion 1986, NACE, Houston, 1986 (paper no. 320)

  16. J.A. Beavers and B.A. Harle, Mechanisms of High-pH and Near-Neutral-pH SCC of Underground Pipelines, International Pipeline Conference, Vol 1, ASME, 1996, p 555–568

  17. D.H. Davies and G.T. Burstein, The Effects of Bicarbonate on the Corrosion and Passivation of Iron, Corrosion, 1980, 36, p 416–422

    CAS  Google Scholar 

  18. R.N. Parkins and S. Zhou, The Stress Corrosion Cracking of C-Mn Steel in CO2-HCO3-CO3 2− Solutions. I: Stress Corrosion Data, Corros. Sci., 1997, 39, p 159–173

    Article  CAS  Google Scholar 

  19. R.N. Parkins and S. Zhou, The Stress Corrosion Cracking of C-Mn Steel in CO2-HCO3-CO3 2− Solutions. II: Electrochemical and Other Data, Corros. Sci., 1997, 39, p 175–191

    Article  CAS  Google Scholar 

  20. G. van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH SCC of Pipeline Steels Part I: Pitting and Cracking Occurrence, Acta Mater., 2007, 55, p 29–42

    Article  Google Scholar 

  21. W. Chen, F. King, and E. Vokes, Characteristics of Near Neutral pH Stress Corrosion Cracks in an X-65 Pipeline Steel, Corrosion, 2002, 58, p 267–275

    Article  CAS  Google Scholar 

  22. M.Z. Yang, J.L. Luo, and B.M. Patchet, Correlation of Hydrogen-Facilitated Pitting of AISI, 304 Stainless Steel to Semiconductivity of Passive Film, Thin Solid Films, 1999, 354, p 142–147

    Article  CAS  ADS  Google Scholar 

  23. A.A. Valeria and M.A. Christopher Brett, Characterisation of Passive Films Formed on Mild Steels in Bicarbonate Solution by EIS, Electrochim. Acta, 2002, 47, p 2081–2091

    Article  Google Scholar 

  24. D.G. Li, Y.R. Feng, Z.Q. Bai, J.W. Zhua, and M.S. Zheng, Influence of Temperature Chloride Ions and Chromium Element on the Electronic Property of Passive Film Formed on Carbon Steel in Bicarbonate/Carbonate Buffer Solution, Electrochim. Acta, 2007, 52, p 7877–7884

    Article  CAS  Google Scholar 

  25. Y.F. Cheng and J.L. Luo, Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel, Electrochim. Acta, 1999, 44, p 2947–2956

    Article  CAS  Google Scholar 

  26. Y.F. Cheng and J.L. Luo, Comparison of Pitting Susceptibility and Semiconducting Properties of the Passive Films on Carbon Steel in Chromate and Bicarbonate Solutions, Appl. Surf. Sci., 2000, 167, p 113–121

    Article  CAS  ADS  Google Scholar 

  27. M.D. Cunha Belo, N.E. Hakiki, and M.G.S. Ferreira, Semiconducting Properties of Passive Films Formed on Nickel-Base Alloys Type 600: Influence of the Alloying Elements, Electrochim. Acta, 1999, 44, p 2473–2481

    Article  Google Scholar 

  28. J.W. Schultze and M.M. Lohrengel, Stability Reactivity and Breakdown of Passive Films: Problems of Recent and Future Research, Electrochim. Acta, 2000, 45, p 2499–2513

    Article  CAS  Google Scholar 

  29. M.E. Armacanqui and R.A. Oriani, Effect of Hydrogen on the Pitting Resistance of Passivating Film on Nickel in Chloride-Containing, Corrosion, 1988, 44, p 696–698

    CAS  Google Scholar 

  30. Q. Yang and J.L. Luo, Effects of Hydrogen on Disorder of Passive Films and Pitting Susceptibility of Type 310 Stainless Steel, J. Electrochem. Soc., 2001, 148, p B29–B35

    Article  CAS  Google Scholar 

  31. H. Yashiro, B. Pound, N. Kumagai, and K. Tanno, The Effect of Permeated Hydrogen on the Pitting of Type 304 Stainless Steel, Corros. Sci., 1998, 40, p 781–791

    Article  CAS  Google Scholar 

  32. L. Zhang, X.G. Li, C.W. Du, and Y.F. Cheng, Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in a CO2-Containing Solution, J. Mater. Eng. Perform., 2009, 18, p 319–323

    Article  Google Scholar 

  33. J.G. Yu, J.L. Luo, and P.R. Norton, Electrochemical Investigation of the Effects of Hydrogen on the Stability of the Passive Film on Iron, Electrochim. Acta, 2002, 47, p 1527–1536

    Article  CAS  Google Scholar 

  34. S. Ningshen, U.K. Mudali, and G. Amarend, Hydrogen Effects on the Passive Film Formation and Pitting Susceptibility of Nitrogen Containing Type 316L Stainless Steels, Corros. Sci., 2006, 48, p 1106–1121

    Article  CAS  Google Scholar 

  35. G. Razzini, M. Cabrini, S. Maffi, G. Mussati, and L. Peraldo Bicelli, Photoelectrochemical Visualization in Real-Time of Hydrogen Distribution in Plastic Regions of Low-Carbon Steel, Corros. Sci., 1999, 41, p 203–209

    Article  CAS  Google Scholar 

  36. G. Razzini, S. Maffi, G. Mussati, and L. Peraldo Bicelli, The Scanning Photoelectrochemical Microscopy of Diffusing Hydrogen into Metals, Corros. Sci., 1995, 37, p 1131–1141

    Article  CAS  Google Scholar 

  37. G. Razzini, S. Maffi, G. Mussati, L. Peraldo Bicelli, and G. Mitsi, Photo-Electrochemical Imaging of Hydrogen-Induced Damage in Stainless Steel, Corros. Sci., 1997, 39, p 613–620

    Article  CAS  Google Scholar 

  38. S. Maffi, C. Lenardi, and B. Bozzini, Photoelectrochemical Imaging of Non-Planar Surfaces: The Influence of Geometrical and Optical Factors on Image Formation, Meas. Sci. Technol., 2002, 13, p 1398–1403

    Article  CAS  ADS  Google Scholar 

  39. Y.M. Zeng and J.L. Luo, Electronic Band Structure of Passive Film on X70 Pipeline Steel, Electrochim. Acta, 2003, 48, p 3551–3562

    Article  CAS  Google Scholar 

  40. Y.M. Zeng, J.L. Luo, and P.R. Norton, A Study of Semiconducting Properties of Hydrogen Containing Passive Films, Thin Solid Films, 2004, 460, p 116–124

    Article  CAS  ADS  Google Scholar 

  41. K.T. Corbett, B.R. Bowen, and C.W. Petersen, High Strength Steel Pipeline Economics, Int. J. Offshore Polar Eng., 2004, 14, p 36–38

    Google Scholar 

  42. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Characterization and Mott-Schottky Analysis of Corrosion of Welded X70 Pipeline Steel in Carbonate/Bicarbonate Solution, Electrochim. Acta, 2009, 55, p 316–324

    Article  CAS  Google Scholar 

  43. C. DeWaard and D.E. Milliams, Carbonic Acid Corrosion of Steel, Corrosion, 1975, 31, p 177–181

    CAS  Google Scholar 

  44. J.K. Heuer and J.F. Stubbins, An XPS Characterization of FeCO3 Films from CO2 Corrosion, Corros. Sci., 1999, 41, p 1231–1243

    Article  CAS  Google Scholar 

  45. J.O.M. Bockris and D. Drazic, The Electrode Kinetics of the Deposition and Dissolution of Iron, Electrochim. Acta, 1962, 7, p 293–313

    Article  CAS  Google Scholar 

  46. B.R. Linter and G.T. Burstein, Reaction of Pipeline Steel in Carbon Dioxide Solution, Corros. Sci., 1999, 41, p 117–139

    Article  CAS  Google Scholar 

  47. P. Li, T.C. Tan, and J.Y. Lee, Impedance Spectra of the Anodic Dissolution of Mild Steel in Sulfuric Acid, Corros. Sci., 1996, 38, p 1935–1955

    Article  CAS  Google Scholar 

  48. Y.F. Cheng, M. Wilmott, and J.L. Luo, The Role of Chloride Ions in Pitting of Carbon Steel Studied by Statistical Analysis of Electrochemical Noise, Appl. Surf. Sci., 1999, 152, p 161–168

    Article  CAS  ADS  Google Scholar 

  49. D.D. Macdonald, Passivity—the Key to Our Metals-Based Civilization, Pure Appl. Chem., 1999, 71, p 951–986

    Article  CAS  Google Scholar 

  50. D.D. Macdonald, Point Defect Model for the Passive State, J. Electrochem. Soc., 1992, 139, p 3434–3449

    Article  CAS  Google Scholar 

  51. M.C. Li and Y.F. Cheng, Mechanistic Investigation of Hydrogen-Enhanced Anodic Dissolution of X-70 Pipe Steel and its Implication on Near-Neutral pH SCC of Pipelines, Electrochim. Acta, 2007, 52, p 8111–8117

    Article  CAS  Google Scholar 

  52. Z. Qin, P.R. Norton, and J.L. Luo, Effects of Hydrogen on Formation of Passive Films on AISI, 310 Stainless Steel, Br. Corros. J., 2001, 36, p 33–42

    Article  CAS  Google Scholar 

  53. D. Wallinder, G. Hultquist, and B. Tventen, Hydrogen in Chromium: Influence on Corrosion Potential and Anodic Dissolution in Neutral NaCl Solution, Corros. Sci., 2001, 43, p 1267–1271

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Canada Research Chairs Program and Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, H.B., Cheng, Y.F. Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements. J. of Materi Eng and Perform 19, 1311–1317 (2010). https://doi.org/10.1007/s11665-010-9631-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9631-3

Keywords

Navigation