Skip to main content

Advertisement

Log in

Effects of Chloride and Carbonate on Corrosion of API-X100 Pipeline Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of chloride, introduced with 0.03, 0.05, 0.10, 0.12, 0.22, 0.25 M, on the corrosion behavior of API-X100 pipeline steel in 0.15 M carbonate solutions were studied. The evaluations were carried out with monitoring the open-circuit potentials and electrochemical impedance spectroscopy (EIS). The open-circuit potentials gave an electrochemical evidence on the weakening opposite kinetics of the passive film formation to the kinetics of dissolution with higher chloride concentrations. The open-circuit potentials were less with higher chloride concentrations. The EIS tests indicated that the corrosion resistance decreased, and species diffusion increased with the chloride concentration, in multi-time constant interactions. In all tests, slippery transparent films formed with no presence of pitting on the sample surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Lee, Z. Qin, M. Odziemkowski, and D. Shoesmith, The Influence of Groundwater Anions on the Impedance Behaviour of Carbon Steel Corroding Under Anoxic Conditions, Electrochim. Acta, 2006, 51(2006), p 1558–1568

    Article  Google Scholar 

  2. J.G. Gonzalez-Rodriguez, M.A. Espinosa-Medina, C. Angeles-Chavez, and T. Zeferino-Rodriguez, SCC of X-52 and X-60 Weldements in Diluted NaHCO3 Solutions with Chloride and Sulfate Ions, Mater. Corros., 2007, 58(8), p 599–603

    Article  Google Scholar 

  3. J.J. Park, S.I. Pyun, K.H. Na, S.M. Lee, and Y.T. Kho, Effect of Passivity of the Oxide Film on Low-pH Stress Corrosion Cracking of API, 5L X-65 Pipeline Steel in Bicarbonate Solution, Corrosion, 2002, 58(4), p 329–336

    Article  Google Scholar 

  4. X. Mao, X. Liu, and R.W. Revie, Pitting Corrosion of Pipeline Steel in Dilute Bicarbonate Solution with Chloride Ions, Corrosion, 1994, 50(9), p 651–657

    Article  Google Scholar 

  5. A.Q. Fu and Y.F. Cheng, Electrochemical Polarization Behavior of X70 Steel in Thin Carbonate/Bicarbonate Solution Layers Trapped Under a Disbonded Coating and its Implication on Pipeline SCC, Corros. Sci., 2010, 52(7), p 2511–2518

    Article  Google Scholar 

  6. Eliyan, F. F., Kish, J. R., & Alfantazi, A. (2016). Corrosion of New-Generation Steel in Outer Oil Pipeline Environments. J. Mater. Eng. Perform., 1–7.

  7. F.F. Eliyan, J.R. Kish, and A. Alfantazi, Voltammetric Analysis on the Formation of Fe (OH)2 and FeCO3, and on the Reactivity of Passivation of Steel in Carbonate Solutions, J. Mater. Eng. Perform., 2015, 24(6), p 2473–2480

    Article  Google Scholar 

  8. A.Q. Fu and Y.F. Cheng, Effects of Alternating Current on Corrosion of a Coated Pipeline Steel in a Chloride-Containing Carbonate/Bicarbonate Solution, Corros. Sci., 2010, 52(2), p 612–619

    Article  Google Scholar 

  9. W. Chen, F. King, T.R. Jack, and M.J. Wilmott, Environmental Aspects of Near-Neutral pH Stress Corrosion Cracking of Pipeline Steel, Metallurg. Mater. Trans. A, 2002, 33(5), p 1429–1436

    Article  Google Scholar 

  10. A.B. Arabey, R.I. Bogdanov, V.E. Ignatenko, T.A. Nenasheva, and A.I. Marshakov, Effect of Corrosion Medium Composition on Rate of Crack Growth in X70 Pipeline Steel, Protect. Metals Phys. Chem. Surf., 2011, 47(2), p 236–245

    Article  Google Scholar 

  11. L.T. Popoola, A.S. Grema, G.K. Latinwo, B. Gutti, and A.S. Balogun, Corrosion Problems During Oil and Gas Production and its Mitigation, Int. J. Ind. Chem., 2013, 4(1), p 35

    Article  Google Scholar 

  12. L. Fan, C.W. Du, Z.Y. Liu, and X.G. Li, Stress Corrosion Cracking of X80 Pipeline Steel Exposed to High pH Solutions with Different Concentrations of Bicarbonate, Int. J. Miner. Metallurg. Mater., 2013, 20(7), p 645–652

    Article  Google Scholar 

  13. F.F. Eliyan and A. Alfantazi, Mechanisms of Corrosion and Electrochemical Significance of Metallurgy and Environment with Corrosion of Iron and Steel in Bicarbonate and Carbonate Solutions—A Review, Corrosion, 2014, 70(9), p 880–898

    Article  Google Scholar 

  14. D. Brasher, Stability of the Oxide Film on Metals in Relation to Inhibition of Corrosion. II. Dual Role of the Anion in the Mild Inhibition of the Corrosion of Mild Steel, Br. Corros. J., 1968, 4, p 122–128

    Article  Google Scholar 

  15. G. Burstein and D. Davies, The Effects of Anions on the Behaviour of Scratched Iron Electrodes in Aqueous Solutions, Corros. Sci., 1980, 20, p 1143–1155

    Article  Google Scholar 

  16. Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides, Corros. Sci., 2006, 48, p 3049

    Article  Google Scholar 

  17. R. Parkins, S. Zhou The Stress Corrosion Cracking of C-Mn steel in CO2 -HCO3-CO3 2− Solutions. II: Electrochemical and Other Data, Corros. Sci. 39, (1997): p. 175.

  18. J.M. Kolotyrkin, Pitting Corrosion of Metals, Corrosion, 1963, 19(8), p 261t–268t

    Article  Google Scholar 

  19. J. Thomas, T. Nurse, and R. Walker, Anodic Passivation of Iron in Carbonate Solutions, Br. Corros. J., 1970, 5, p 87–94

    Article  Google Scholar 

  20. E. Castro, C. Valentini, C. Moina, J. Vilche, A. Arvia, The Influence of Ionic Composition on the Electrodissolution and Passivation of Iron Electrodes in Potassium Carbonate-Bicarbonate Solutions in the 8.4-10.5 pH Range at 25 °C, Corros. Sci. 26 (1986) 791–793.

  21. E. Castro, J. Vilche, A. Arvia, Iron Dissolution and Passivation in K2CO3-KHCO3 Solutions. Rotating Ring Disc Electrode and XPS Studies, Corros. Sci. 32 (1991) 37-50.

  22. R. Parkins, S. Zhou, The Stress Corrosion Cracking of C-Mn steel in CO2 -HCO3-CO3 2− solutions. II. Electrochemical and Other Data, Corros. Sci. 39 (1997) 175–191.

  23. F.F. Eliyan and A. Alfantazi, Sensitivity of the Passive Films on API-X100 Steel Heat-Affected Zones (HAZs) Towards Trace Chloride Concentrations in Bicarbonate Solutions at High Temperature, Mater. Corros., 2014, 65(11), p 1111–1119

    Article  Google Scholar 

  24. F.M. Al-Kharafi, B.G. Ateya, and R.M. Abdallah, Electrochemical Behaviour of Low Carbon Steel in Concentrated Carbonate Chloride Brines, J. Appl. Electrochem., 2002, 32(12), p 1363–1370

    Article  Google Scholar 

  25. J. Jelinek and P. Neufeld, Temperature Effect on Pitting Corrosion of Mild Steel in De-Aerated Sodium Bicarbonate-Chloride Solutions, Corros. Sci., 1980, 20, p 489–496

    Article  Google Scholar 

  26. M. El-Naggar, Effects of Cl, NO3 and SO4 2− Anions on the Anodic Behaviour of Carbon Steel in Deaerated 0.5 M NaHCO3 Solutions, Appl. Surf. Sci. 252 (2006) 6179–6194.

  27. J. Neshati, H. Masiha, M. Mahjani, M. Jafarian, Study of Corrosion of Carbon Steel API 5L (X60) in NaHCO3/NaCl Solutions by Electrochemical Noise and Impedance Measurements, Corros. Eng., Sci. Technol. 42 (2007) 371-376.

  28. Y. Tang and Y. Zuo, The Metastable Pitting of Mild Steel in Bicarbonate Solutions, Mater. Chem. Phys., 2004, 88, p 221–226

    Article  Google Scholar 

  29. H.B. Xue and Y.F. Cheng, Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements, J. Mater. Eng. Perform., 2010, 19(9), p 1311–1317

    Article  Google Scholar 

  30. F. Mohammadi, F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API, X-80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333

    Article  Google Scholar 

  31. D.G. Li, Y.R. Feng, Z.Q. Bai, J.W. Zhu, and M.S. Zheng, Influence of Temperature, Chloride Ions and Chromium Element on the Electronic Property of Passive Film Formed on Carbon Steel in Bicarbonate/Carbonate Buffer Solution, Electrochim. Acta, 2007, 52(28), p 7877–7884

    Article  Google Scholar 

  32. Castro, E. B., Valentini, C. R., Moina, C. A., Vilche, J. R., & Arvia, A. J. (1986). The Influence of Ionic Composition on the Electrodissolution and Passivation of Iron Electrodes in Potassium Carbonate-Bicarbonate Solutions in the 8.4–10.5 pH range at 25 C. Corros. Sci., 26(10), 781791–789793.

  33. E. Castro, Analysis of the Impedance Response of Passive Iron, Electrochim. Acta, 1994, 39, p 2117–2123

    Article  Google Scholar 

  34. R. Cottis and S. Turgoose, Electrochemical Impedance and Noise, NACE International, USA, 1999

    Google Scholar 

  35. F. Eliyan, E. Mahdi, and A. Alfantazi, Investigating the Corrosion of API-X100 Pipeline Steel in Aerated Carbonate Solutions by Electrochemical Methods, Int. J. Electrochem. Sci., 2013, 8, p 578–590

    Google Scholar 

  36. F. Mansfeld, Recording and Analysis of AC Impedance Data for Corrosion Studies, Corrosion, 1981, 36, p 301–307

    Article  Google Scholar 

  37. B. Kinsella, Y. Tan, and S. Bailey, Electrochemical Impedance Spectroscopy and Surface Characterization Techniques to Study Carbon Dioxide Corrosion Product Scales, Corrosion, 1998, 54, p 835–842

    Article  Google Scholar 

  38. K. Juttner, Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces, Electrochim. Acta, 1990, 35, p 1501–1508

    Article  Google Scholar 

  39. Y. Lu, D. Junhua, and K. Wei, Corrosion Evolution of Low Alloy Steel in Deaerated Bicarbonate Solutions, J. Mater. Sci. Technol., 2015, 31, p 1047–1058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faysal Fayez Eliyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliyan, F.F., Alsyouri, H.M. Effects of Chloride and Carbonate on Corrosion of API-X100 Pipeline Steel. J. of Materi Eng and Perform 28, 1728–1733 (2019). https://doi.org/10.1007/s11665-019-03937-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03937-z

Keywords

Navigation