Skip to main content
Log in

Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Gurevich and V.N. Zamkov, Nekotorye Osovennosti Svarki Titana Neplaviachinsia Zlektrodom S Primeneniem Flynsov, Avtom. Svarka, 1966, 12, p 13–16

    Google Scholar 

  2. M.M. Savitskii and G.I. Leskov, Mechanizm Vliyamia Dzlektrootrida Tepvnykh Zpementov Na Proplavlauchyu Sposovnosti Luqi S Voliframoym Katodm, Avtom. Svarka, 1980, 9, p 17–22

    Google Scholar 

  3. W. Lucas and D.S. Howse, Activating Flux-Increasing the Performance and Productivity of the TIG and Plasma Processes, Weld. Metal Fabr., 1996, 64, p 11–17

    CAS  Google Scholar 

  4. D.S. Howse and W. Lucas, Investigation into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding, Sci. Technol. Weld. Join., 2000, 5, p 189–193

    Article  CAS  Google Scholar 

  5. D. Fan, R.H. Zhang, Y.F. Gu, and M. Ushio, Effect of Flux on A-TIG Welding of Mild Steel, Trans. JWRI, 2001, 30, p 35–40

    CAS  Google Scholar 

  6. C.R. Heiple and J.R. Roper, Mechanism for Minor Effect on GTA Fusion Zone Geometry, Weld. J., 1982, 61, p 97s–102s

    Google Scholar 

  7. C.R. Heiple and J.R. Roper, Surface Active Element Effects on the Shape of GTA, Laser, and Electron Beam Welds, Weld. J., 1983, 62, p 72s–77s

    Google Scholar 

  8. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshi-ishi, and C.L. Yang, Effects of Activating Flux on Arc Phenomena in Gas Tungsten Arc Welding, Sci. Technol. Weld. Join., 2000, 6, p 397–402

    Article  Google Scholar 

  9. P.J. Modenesi, E.R. Apolinario, and I.M. Pereira, TIG Welding with Single Component Fluxes, J. Mater. Proc. Technol., 2000, 99, p 260–265

    Article  Google Scholar 

  10. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi, Weld Penetration and Marangoni Convection with Oxide Fluxes in GTA Welding, Mater. Trans., 2002, 43, p 2926–2931

    Article  CAS  Google Scholar 

  11. J.J. Lowke, M. Tanaka, and M. Ushio, Insulation Effects of Flux Layer in Producing Greater Weld Depth, Proc. 57th Ann. Assembly Int. Inst. Weld., July 2004 (Osaka, Japan), International Institute of Welding, IIW Doc. 212-1053-04

  12. G.M. Oreper and J. Szekely, A Comprehensive Representation of Transient Weldpool Development in Spot Welding Operations, Metall. Trans. A, 1987, 18, p 1325–1332

    Article  Google Scholar 

  13. T. Zacharia, S.A. David, J.M. Vitek, and T. Debroy, Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel, Part I. Theoretical Analysis, Weld. J., 1989, 68, p 499s–509s

    Google Scholar 

  14. T. Zacharia, S.A. David, J.M. Vitek, and T. Debroy, Weld Pool Development During GTA and Laser Welding of Type 304 Stainless Steel, Part II. Experimental Correlation, Weld. J., 1989, 68, p 510s–519s

    Google Scholar 

  15. Y. Wang, Q. Shi, and H.L. Tsai, Modeling of the Effects of Surface-Active Elements on Flow Patterns and Weld Penetration, Metall. Mater. Trans. B, 2001, 32, p 145–161

    Article  CAS  Google Scholar 

  16. R.H. Zhang and D. Fan, Effects of Activating Flux on Flow Patterns and Weld Penetration in ATIG Welding, Sci. Technol. Weld. Join., 2007, 12(1), p 15–23

    Article  CAS  Google Scholar 

  17. W.C. Dong, S.P. Lu, D.Z. Li, and Y.Y. Li, Numerical Simulation of Effects of the Minor Active-Element Oxygen on the Marangoni Convection and the Weld Shape, Acta Metall. Sin., 2008, 44, p 249–256 (in Chinese)

    CAS  Google Scholar 

  18. M. Tanaka, H. Terasaki, M. Ushio, and J.J. Lowke, Numerical Study of a Free-Burning Argon Arc with Anode Melting, Plasma Chem. Plasma Process., 2003, 23(3), p 585–606

    Article  CAS  Google Scholar 

  19. M.A. Ramirez, G. Trapaga, and J. McKelliget, A Comparison Between Two Different Numerical Formulations of Welding Arc Simulation, Model. Simul. Mater. Sci. Eng., 2003, 11, p 675–695

    Article  ADS  Google Scholar 

  20. F. Lago, J.J. Gonzalez, P. Freton, and A. Gleizes, A Numerical Modeling of an Electrode Arc and Its Interaction with the Anode: Part I. The Two-Dimensional Model, J. Phys. D Appl. Phys., 2004, 37, p 883–897

    Article  CAS  ADS  Google Scholar 

  21. Y.M. Zhang, Z.N. Cao, and R. Kovacevic, Numerical Analysis of Fully Penetrated Weld Pools in GTA Welding, Proc. Inst. Mech. Eng., Part C. J. Mech. Eng. Sci., 1996, 210, p 187–195

    Google Scholar 

  22. V.R. Voller, M. Cross, and N.C. Markatos, An Enthalpy Method for Convection Diffusion Phase-Change, Int. J. Numer. Methods Eng., 1987, 24, p 271–284

    Article  MATH  Google Scholar 

  23. J.J. Gonzalez, F. Lago, P. Freton, M. Masquere, and X. Franceries, Numerical Modelling of an Electric Arc and Its Interaction with the Anode: Part II. The Three-Dimensional Model-Influence of External Forces on the Arc Column, J. Phys. D Appl. Phys., 2005, 38, p 306–318

    Article  CAS  ADS  Google Scholar 

  24. J. McKelliget and J. Szekely, Heat Transfer and Fluid Flow in the Welding Arc, Metall. Mater. Trans. A, 1986, 17, p 1139–1148

    Article  ADS  Google Scholar 

  25. C.S. Wu and J.Q. Gao, Analysis of the Heat Flux Distribution at the Anode of a TIG Welding Arc, Comput. Mater. Sci., 2002, 24(3), p 323–327

    Article  CAS  MathSciNet  Google Scholar 

  26. P. Sahoo, T. DebRoy, and M.J. McNallan, Surface Tension of Binary Metal-Surface Active Solute Systems Under Conditions Relevant to Welding Metallurgy, Metall. Trans. B, 1988, 19, p 483–491

    Article  Google Scholar 

  27. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas—Fundamentals and Applications, Vol 1, Plenum, New York, 1994, p 388

    Google Scholar 

  28. D.L. Evans and R.S. Tankin, Measurement of Emission and Absorption of Radiation by an Argon Plasma, Phys. Fluids, 1967, 10(6), p 1137–1144

    Article  ADS  Google Scholar 

  29. R.T.C. Choo, J. Szekely, and S.A. David, On the Calculation of the Free Surface Temperature of Gas-Tungsten-Arc Weld Pools from First Principles: Part II. Modeling the Weld Pool and Comparison with Experiments, Metall. Trans. B, 1992, 23, p 371–384

    Article  Google Scholar 

  30. H.G. Fan, H.L. Tsai, and S.J. Na, Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding, Int. J. Heat Mass Transfer, 2001, 44, p 417–428

    Article  MATH  CAS  Google Scholar 

  31. Fluent Inc., FLUENT User’s Manual, Lebanon, NH, 2005

  32. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980

    MATH  Google Scholar 

  33. K.C. Hsu, K. Etemadi, and E. Pfender, Study of the Free-Burning High-Intensity Argon Arc, J. Appl. Phys., 1982, 54(3), p 1293–1301

    Article  ADS  Google Scholar 

  34. O.H. Nestor, Heat Intensity and Current Density Distributions at the Anode of High Current, Inert Gas Arcs, J. Appl. Phys., 1962, 33(5), p 1638–1648

    Article  ADS  Google Scholar 

  35. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi, Effects of Oxygen Additions to Argon Shielding Gas on GTA Weld Shape, ISIJ Int., 2003, 43(10), p 1590–1595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Science Foundation of China (NSFC) under Grant No. 50874101 and the Science Program of Shenyang City under Grant No. 1071275-0-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, W., Lu, S., Li, D. et al. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool. J. of Materi Eng and Perform 19, 942–950 (2010). https://doi.org/10.1007/s11665-009-9570-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9570-z

Keywords

Navigation