Skip to main content
Log in

Modeling of Transformation Superplastic Forming of Ti Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Transformation superplastic forming is an attractive alternative forming technique to microstructural superplastic forming, since it requires no special microstructures and, therefore, eliminates the limitation of superplastic forming capability to only expensive materials with stable high-temperature fine grains. Transformation superplasticity occurs through biasing the internal stress produced from an allotropic phase transformation by a small external stress. In this work, finite element modeling was implemented to study the transformation superplastic forming of domes from flat circular thin plate samples. The evolution and distribution of stress, strain, and dome thickness was analyzed in detail. The thickness distributions in the formed domes were compared with the theoretical predictions of two models, which assume different stress states in the domes. The appropriate stress state was identified through this comparison. Different gas pressure amplitudes were applied during forming to investigate the effect on the formed-dome apex height, when the forming time was fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.G. Nieh, J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics, 1st ed., Cambridge University Press, 2005

  2. M. Kawasaki, R.B. Figueiredo, C. Xu, T.G. Langdon, Developing Superplastic Ductilities in Ultrafine-grained Metals, Metall. Mater. Trans. A, 2007, 38A, 1891–1898

    Article  CAS  Google Scholar 

  3. M. Kawasaki, T.G. Langdon, Principles of Superplasticity in Ultrafine-grained Materials, J. Mater. Sci., 2007, 42, 1782–1796

    Article  CAS  Google Scholar 

  4. S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita, T.G. Langdon, Grain Refinement and Superplastic Flow in an Aluminum Alloy Processed by High-pressure Torsion, Mater. Sci. Eng. A, 2005, 408, p 141–146

    Article  CAS  Google Scholar 

  5. C.Y. Gao, P. Lours, G. Bernhart, Thermomechanical Stress Analysis of Superplastic Forming Tool, J. Mater. Process. Technol., 2005, 169, 281–291

    Article  CAS  Google Scholar 

  6. A. Dutta, I. Charit, L.B. Johannes, R.S. Mishra, Deep Cup Forming by Superplastic Punch Stretching of Friction Stir Processed 7075 Al Alloy, Mater. Sci. Eng. A, 2005, 395, 173–179

    Article  CAS  Google Scholar 

  7. C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Developing a Superplastic Forming Capability in Nanometals, Solid State Phenom., 2005, 101-102, 23–30

    CAS  Google Scholar 

  8. Y.T. Zhu, T.G. Langdon, The Fundamentals of Nanostructured Materials Processed by Severe Plastic Deformation, JOM, 2004, 56, 58–63

    Article  CAS  Google Scholar 

  9. M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, Achieving Superplasticity of Al-1%Mg-0.2%Sc Alloy in Plate Samples Processed by Equal-channel Angular Pressing, Mater. Trans., 2004, 45, 2521–2524

    Article  CAS  Google Scholar 

  10. Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and Applications of Nanostructured Materials Produced by Severe Plastic Deformation, Scripta Mater., 2004, 51, 825–830

    Article  CAS  Google Scholar 

  11. V.N. Perevezentsev, V.N. Chuvil’deev, V.I. Kopylov, A.N. Sysoev, T.G. Langdon, Developing High Strain Rate Superplasticity in Al-Mg-Sc-Zr Alloys Using Equal-channel Angular Pressing, Ann. Chim.-Sci. Mater., 2002, 27, 99–109

    Article  CAS  Google Scholar 

  12. A.V. Sergueeva, N.A. Mara, A.K. Mukherjee, Plasticity at Really Diminished Length Scales, Mater. Sci. Eng. A, 2007, 463, 8–13

    Article  CAS  Google Scholar 

  13. N.A. Mara, A.V. Sergueeva, T.D. Mara, S.X. McFadden, A.K. Mukherjee, Superplasticity and Cooperative Grain Boundary Sliding in Nanocrystalline Ni3Al, Mater. Sci. Eng. A, 2007, 463, 238–244

    Article  CAS  Google Scholar 

  14. R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium, Scripta Mater., 2003, 49, 669–674

    Article  CAS  Google Scholar 

  15. X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, A.K. Mukherjee, Studies of Deformation Mechanisms in Ultra-fine-grained and Nanostructured Zn, Acta Mater., 2002, 50, 4823–4830

    Article  CAS  Google Scholar 

  16. G.W. Greenwood, R.H. Johnson, The Deformation of Metals Under Small Stresses During Phase Transformations, Proc. Roy. Soc. Lond. A, 1965, 283, 403–422

    Article  Google Scholar 

  17. S.M. Pickard, B. Derby, The Influence of Microstructure on Internal-Stress Superplasticity in Polycrystalline Zinc, Scripta Metall. Mater., 1991, 25, 467–472

    Article  CAS  Google Scholar 

  18. B. Derby, The Mechanism of Internal Stress Superplasticity, in Superplasticity in Metals, Ceramics and Intermetallics, M.J. Mayo, M. Kobayashi, and J. Wadsworth, Eds., MRS, 1990

  19. H. Zhang, G.S. Daehn, R.H. Wagoner, Simulation of the Plastic Response of Whisker Reinforced Metal Matrix Composites Under Thermal Cycling Conditions, Scripta Metall. Mater., 1991, 25, 2285–2290

    Article  CAS  Google Scholar 

  20. D.C. Dunand, P. Zwigl, Hydrogen-Induced Internal-Stress Plasticity in Titanium, Metall. Mater. Trans. A, 2001, 32, 841–843

    Google Scholar 

  21. C. Schuh, D.C. Dunand, Internal Stress Plasticity due to Chemical Stresses, Acta Mater., 2001, 49, 3387–3400

    Article  CAS  Google Scholar 

  22. Q. Li, E. Chen, D. Bice, D.C. Dunand, Transformation Superplasticity of Cast Titanium and Ti-6Al-4V, Metall. Mater. Trans. A, 2007, 38A, p 44–53

    Article  CAS  Google Scholar 

  23. M. Frary, C. Schuh, D.C. Dunand, Kinetics of Biaxial Dome Formation by Transformation Superplasticity of Titanium Alloys and Composites, Metall. Mater. Trans. A, 2002, 33, p 1669–1680

    Article  Google Scholar 

  24. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, 1995

  25. J.A. Ewing, The Strength of Materials, 2nd ed., University Press, 1906

  26. R.T. Fenner, Mechanics of Solids, 1st ed., CRC, 1999

  27. F.U. Enikeev, A.A. Kruglov, An Analysis of the Superplastic Forming of a Thin Circular Diaphragm, Int. J. Mech. Sci., 1995, 37, p 473–483

    Article  Google Scholar 

  28. A.R. Ragab, Thermoforming of Superplastic Sheet in Shaped Dies, Met. Technol., 1983, 10, p 340–348

    Google Scholar 

Download references

Acknowledgment

The support form University of Nevada, Reno is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhen Li.

Additional information

This article was presented at Materials Science & Technology 2007, Automotive and Ground Vehicles symposium held September 16-20, 2007, in Detroit, MI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q. Modeling of Transformation Superplastic Forming of Ti Alloys. J. of Materi Eng and Perform 17, 363–368 (2008). https://doi.org/10.1007/s11665-008-9214-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9214-8

Keywords

Navigation