Skip to main content
Log in

Characterization of Deformability of Spheroidal Cementite by Residual Stress Measurement

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article deals with the characterization of the mechanical behaviors of spheroidized carbon steels, which contain ferrite and spheroidal cementite. The aim of the study is to identify the deformation behaviors of cementite particles by x-ray diffraction and to correlate them to the residual stress state evolution. The stress state evolutions for both phases during an in situ 4-point bending test and after a uniaxial tensile test that have been well followed by x-ray diffraction. After each tensile loading, optical observation is made to correlate the determined residual stress state with the microstructure. The coupling of techniques helps us to characterize the deformation evolution of spheroidal cementite in the carbon steel: at the initial state, the cementite shows the same elastic behavior as the ferrite; at the next state, the ferrite begins to deform plastically but the cementite deforms elastically; then, plastic relaxation occurs in the ferrite while the cementite still deforms elastically until finally breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.D. Embury, R.M. Fisher, The Structure and Properties of Drawn Pearlite. Acta Met., 14, 147–159 (1966)

    Article  CAS  Google Scholar 

  2. G. Langford, Deformation of Pearlite. Met. Tran., 8A, 861–875 (1977)

    Article  CAS  Google Scholar 

  3. L. Che, M. Gotoh, Y. Horimoto, and Y. Hirose, Effect of Microstructure of Cementite on Inter-phase Stress State in Carbon Steel, J. Iron. Steel. Res. Int., 2007, 14(4), p 31–38

    Article  CAS  Google Scholar 

  4. D.A. Porter, K.E. Eastering, G.D.W. Smith, Dynamic Studies of The Tensile Deformation and Fracture of Pearlite. Acta Met., 26, 1405–1422 (1978)

    Article  CAS  Google Scholar 

  5. M.H. Hong, W.T. Reynolds, Jr. et al., Atom Probe and Transmission Electron Microscopy Investigations of Heavily Drawn Pearlitic Steel Wire. Met. Mater. Trans. 30A, 717–727 (1999)

    CAS  Google Scholar 

  6. M. Umemoto, Y. Todaka, K. Ysuchiya, Mechanical Properties of Cementite and Fabrication of Artificial Pearlite. Mat. Sci. Forum., 426–432, 859–864 (2003)

    Article  Google Scholar 

  7. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. London. 241A, 376–396 (1957)

    Google Scholar 

  8. T. Mori, K. Tanaka, Average Stress in Matrix and Average Energy of Materials with Misfitting Inclusions. Acta Met., 21, 571–574 (1973)

    Article  Google Scholar 

  9. T. Sasaki, Z. Lin, Y. Hirose, X-ray Measurement of Plastic Strain by Means of Eshelby/Mori-Tanaka Model and Its Application. Jpn. Soc. Mech. Eng., 63A, 158–165 (1997) In Japnese

    Google Scholar 

  10. L. Che, M. Gotoh, Y. Horimoto, Y. Hirose, X-ray Stress Estimation of Carbide Spheroidized JIS SK5 Steel. Mat. Sci. For., 524-525, 943–948 (2006)

    Google Scholar 

  11. P.M. Hazzledine, P.B. Hirsch, A Coplanar Orowan Loops Model for Dispersion Hardening. Phil. Mag., 3, 1331–1351 (1974)

    Article  Google Scholar 

  12. L.M. Brown, W.M. Stobbs, The Work-hardening of Copper-Silica: I. A Model Based on Internal Stresses, with no Plastic Relaxation, Phil. Mag., 23, 1185–1199 (1971)

    Article  CAS  Google Scholar 

  13. L.M. Brown, W.M. Stobbs, The Work-hardening of Copper-Silica: II. The Role of Plastic Relaxation. Phil. Mag., 23, 1201–1233 (1971)

    Article  CAS  Google Scholar 

  14. J.D. Atkinson, L.M. Brown, W.M. Stobbs, The Work-hardening of Copper-Silica: IV. The Bauschinger Effect. Phil. Mag., 30, 1247–1280 (1974)

    Article  CAS  Google Scholar 

  15. P.S. Bate and D.V. Wilson, Analysis of the Bauschinger Effect. Acta Metall., 34(6), 1097–1105 (1986)

    Article  CAS  Google Scholar 

  16. D.V. Wilson, P.S. Bate, Reversibility in the Work Hardening of Spheroidised Steels. Acta Metall., 34(6), 1107–1120 (1986)

    Article  Google Scholar 

  17. M. Belassel, J.L. Lebrun, and S. Deis, et al., Effect of Thermal and Mechanical Loading on the Generation of Macro and Micro Stresses in Eutectoid Steel, 4th Inter. Conf. on Residual Stress (ICRS4), Authorhouse, Baltimore, 1994, p 392–401

  18. Belassel M., Ji V., Lebrun J.L., et al., Analysis of the Mechanical Behavior of Materials Through the 2nd and 3rd Order Stress. J. De Physique IV., C9, 261–264 (1994)

    Google Scholar 

  19. E.C. Oliver, M.R. Daymond, P.J. Withers, Interphase and Integranular Stress Generation in Carbon Steels. Acta Mater., 52, 1937–1951 (2004)

    Article  CAS  Google Scholar 

  20. T. Goldenberg, T.D. Lee, J.P. Hirth, Ductile Fracture of U-Notched Bend Specimens of Spheroidized AISI 1095 Steel. Met. Tran., 9A, 1663–1671 (1978)

    Article  CAS  Google Scholar 

  21. K. Sakamaki, S. Inada, S. Hori, Tensile Fracture of Spheroidized 0.7% Carbon Steel at Low Temperature. J. Soc. Mat. Sci. Jpn., 30, 49–55 (1981), in Japanese

    Google Scholar 

  22. M. Hamada, K. Sakamaki, S. Inada, The Role of Cementite on the Fracture of Spheroidized Cementite Steel (In the case of the cementite particle existing in ferrite grain). Eng. Data. Uni. Tokushima., 28, 11–19 (1983), in Japanese

    Google Scholar 

  23. W.W. Webb, W.D. Forgeng, Mechanical Behavior of Microcrystals. Acta Met., 6, 462–469 (1958)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Che.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che, L., Gotoh, M., Horimoto, Y. et al. Characterization of Deformability of Spheroidal Cementite by Residual Stress Measurement. J. of Materi Eng and Perform 17, 445–453 (2008). https://doi.org/10.1007/s11665-007-9160-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9160-x

Keywords

Navigation