Skip to main content
Log in

On a General Parameterization for Inverse Analysis of Heat Deposition Processes

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A general parameterization for inverse analysis of heat deposition processes using incomplete or minimal experimental data is presented. This parameterization is considered general in the sense that it can be applied, in principle, to the inverse analysis of a wide range of different types of heat deposition processes, including welding. The structure of this parameterization follows from the concepts of model and data spaces that imply the existence of an optimal parametric representation for a given class of inverse problems. Accordingly, the corresponding optimal parametric representation lies in the model space and is determined by the characteristics of the available data sets spanning the data space and the nature of the data sampling for purposes of parameter determination via appropriate optimization techniques. The elements of the proof presented here provide an elucidation of certain aspects of inverse heat-deposition analysis that are important for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Darema, Introduction to the ICCS2006 Workshop on Dynamic Data Driven Applications Systems. Int. Conf. Comput. Sci., 3, 375–383, 2006

    Google Scholar 

  2. F. Darema, Dynamic Data Driven Applications Systems: New Capabilities for Application Simulations and Measurements. Int. Conf. Comput. Sci., 2, 610–615, 2005

    Google Scholar 

  3. J. Michopoulos, S. Lambrakos, On the Fundamental Tautology of Validating Data-Driven Models and Simulations. Int. Conf. Comput. Sci, 2, 738–745, 2005

    Google Scholar 

  4. J.G. Michopoulos and S.G. Lambrakos, Underling issues associated with Validation and Verification of Dynamic Data Driven Simulation, Proceedings of the 2006 Winter Simulation Conference, L.F. Perrone, F.P. Wieland, J. Liu, B.G. Lawson, D.M. Nicol, and R. M. Fujimoto, Eds. WSC, 2006, p 2093–2100

  5. J. Xie, J. Zou, Numerical Reconstruction of Heat Fluxes. SIAM J. Num. Anal. 43(4), 1504–1535, 2005

    Article  Google Scholar 

  6. S.G. Lambrakos and J.O. Milewski, “Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach,” Mathematical Modelling of Weld Phenomena, 7, Verlag der Technischen Universite Graz, Austria, 2005, p 1025–1056

  7. P.G. Moore, H.N. Jones III, S.G. Lambrakos An Inverse Heat Transfer Model of Thermal Degradation within Multifunctional Tensioned Cable Structures. J. Mater. Eng. Perform., 2005, 14(1), 112–118

    Article  CAS  Google Scholar 

  8. S.G. Lambrakos, J.O. Milewski, Analysis of Processes Involving Heat Deposition using Constrained Optimization. Sci. Technol. Welding Joining, 2002, 7(3), 137–148

    Article  Google Scholar 

  9. S.G. Lambrakos, E.A. Metzbower, J.O. Milewski, G. Lewis, R. Dixon, D. Korzekwa: Simulation of Deep penetration Welding Processes using Geometric Constraints based on Experimental information. J. Mater. Eng. Perform., 1994, 3(5), 639–648

    Article  CAS  Google Scholar 

  10. J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, p 49–52

  11. D.N. Ghosh Roy Methods of Inverse Problems in Physics. CRC Press, Boca Raton, 1991

    Google Scholar 

  12. M.N. Ozisik, H.R.B. Orlande Inverse Heat Transfer, Fundamentals and Applications. Taylor and Francis, New York, 2000

    Google Scholar 

  13. K. Kurpisz, A.J. Nowak Inverse Thermal Problems. Computational Mechanics Publications, Boston, USA, 1995

    Google Scholar 

  14. O.M. Alifanov, Inverse Heat Transfer Problems. Springer, Berlin, 1994

    Google Scholar 

  15. J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems. Wiley Interscience, New York, 1985

    Google Scholar 

  16. K.A. Woodbury, Ed. Inverse Engineering Handbook. CRC Press, New York, 2003

    Google Scholar 

  17. A. Tarantola Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia, PA, 2005

    Google Scholar 

  18. C.R. Vogel Computational Methods for Inverse Problems. SIAM, Philadelphia, PA, 2002

    Google Scholar 

  19. P.C. Sabatier, Ed. Inverse Problems: An Interdisciplinary Study. Academic Press, London, 1987

    Google Scholar 

  20. C.W. Groetsch Inverse Problems in the Mathematical Sciences. Vieweg, Bruanschweig, Wiesbaden, 1993

    Google Scholar 

  21. A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York, 1996

    Google Scholar 

  22. I.J.D. Craig, J.C. Brown Inverse Problems in Astronomy, A Guide to Inversion Strategies for Remotely Sensed Data. Adam Hilger Ltd, Bristol, Boston, 1986

    Google Scholar 

  23. Y. Collette, P. Siarry Multiobjective Optimization, Principles and Case Studies. Springer-Verlag, New York, 2003

    Google Scholar 

  24. V.A. Karkhin, V.V. Plochikhine, A.S. Ilyin, H.W. Bergmann Inverse Modelling of Fusion Welding Process. In H. Cerjak (Ed.) Mathematical Modelling of Weld Phenomena, Vol. 6. Maney Publishing, London, p 1017–1042, 2002

    Google Scholar 

  25. H.S. Carslaw, J.C. Jaegar Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford, 1959

    Google Scholar 

  26. T.A. Palmer, B. Wood, J.W. Elmer, C. Westrich, J.O. Milewski, M. Piltch, and R. Carpenter, Characterization of Stainless Steel and Refractory Metal Welds Made Using a Diode-Pumped, Continuous Wave Nd:YAG Laser, Report UCRL-ID-146005, Lawrence Livermore National Laboratory, November, 2001

  27. G.S. Dulikravich and T.J. Martin, “Inverse Shape and Boundary Condition Problems and Optimization”, Heat Conduction: Advances in Numerical Heat Transfer, Vol. 1, chapter 10. W.J. Minkowycz and E.M. Sparrow, Eds., Taylor & Francis, 1996, p 381–426

  28. T.J. Martin, G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transfer 118 (1996) 546–554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A Naval Research Laboratory core program sponsored some of this research. The second author also acknowledges partial support by the National Science Foundation under grants EIA-0205663 and CNS-0540419. The authors would like to thank John Milewski of Los Alamos National Laboratory for his many discussions concerning welding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.G. Lambrakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambrakos, S., Michopoulos, J. On a General Parameterization for Inverse Analysis of Heat Deposition Processes. J. of Materi Eng and Perform 17, 411–421 (2008). https://doi.org/10.1007/s11665-007-9144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9144-x

Keywords

Navigation