Skip to main content
Log in

New Methods for Severe Plastic Deformation Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Several new concepts for possible methods of severe plastic deformation (SPD) of bulk quantities of materials are presented. The first of these are variations of equal channel angular extrusion (ECAE) in which the conventional fixed die is replaced by rotating tools, for the inner die corner, the outer die corner, or both corners. Other methods share some characteristics of ECAE in that they use shearing strains to deform the material; these are reversed shear spinning and transverse rolling. Deformation sequences for a cylindrical or annular workpiece that deform the workpiece while eventually restoring the initial workpiece geometry can be performed by numerous processes. These techniques can be used to accumulate high strains by repeated deformation cycles. These methods offer possible alternatives to ECAE and high-pressure torsion, with potential benefits that include different and larger workpiece geometries, simplified tooling design, lower tooling loads, ease of lubrication, automated or reduced part handling, and, in some cases, potentially continuous operation. It is hoped that these suggestions will prompt new examination of alternative methods for SPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, 1 Edition, McGraw-Hill Book Company, New York, NY, 1952, p 279

    MATH  Google Scholar 

  2. R.Z. Valiev, I.V. Islamgaliev, I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 45, 2000, 103

    Article  CAS  Google Scholar 

  3. S. Erbel, Mechanical Properties and Structure of Extremely Strain-Hardened Copper, Metals Tech., 6, 1979, 482

    CAS  Google Scholar 

  4. I. Saunders, J. Nutting, Deformation of Metals to High Strains Using Combination of Torsion and Compression, Metal Sci., 18, 1984, 571

    Article  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scripta Mater., 39, 1998, 1221

    Article  CAS  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel Ultra-High Straining Process for Bulk Materials – Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 47, 1999, 579

    Article  CAS  Google Scholar 

  7. H.H. Shin, J.-J. Park, Y.-S. Kim, K.-T. Park, Constrained Groove Pressing and its Application to Grain Refinement of Aluminum, Mater. Sci. Eng., A238, 2002, 98

    Google Scholar 

  8. J.W. Lee, J.J. Park, Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement, J. Mater. Proc. Tech., 130-131, 2002, 208

    Article  CAS  Google Scholar 

  9. J. Richert, M. Richert, A New Method for Unlimited Deformation of Metals and Alloys, Aluminium, 62, 1986, 604

    CAS  Google Scholar 

  10. J.-W. Yeh and Y.S. Liao, A New Reciprocating Extrusion Method for Producing High-Grade 7075 Aluminum Alloys, THERMEC’97, Int. Conf. on Thermomechanical Processing of Steels and Other Materials, T. Chandra and T. Sakai, Eds., The Minerals, Metals and Materials Society, Warrendale, PA, 1997, p 1151

  11. W.L. Lu, Y. Wang, J.T. Hai, The Effects of Sandglass Extrusion on Material Microstructures and Properties, Mater. Sci. Forum, 426-432, 2003, 2831

    CAS  Google Scholar 

  12. H.J. Zughaer, J. Nutting, Deformation of Sintered Copper and 50Cu-50Fe Mixture to Large Strains by Cyclic Extrusion and Compression, Mater. Sci. Tech., 8, 1992, 1104

    CAS  Google Scholar 

  13. T. Aizawa, K. Kondoh, Nano-Structured Materials via Bulk Mechanical Alloying, Scripta Mater., 44, 2002, 1751

    Google Scholar 

  14. P.E. Armstrong, J.E. Hockett, O.D. Sherby, Large Strain Multidirectional Deformation of 1100 Aluminum at 300 K, J. Mech. Phys. Solids, 30, 1982, 37

    Article  CAS  Google Scholar 

  15. A.K. Ghosh, “Method of Producing a Fine Grain Aluminum Alloy Using Three Axes Deformation,” United States Patent 4,721,537, 1988

  16. R. Kaibyshev, S. Olenyov, F. Musin, Grain Refinement Under Multiple Warm Compression in an Al-Mg-Sc Alloy, Mater. Sci. Forum, 426-432, 2003, 4603

    Article  CAS  Google Scholar 

  17. M. Noda, M. Hirohashi, K. Funami, Low Temperature Superplasticity and its Deformation Mechanism in Grain Refinement of Al-Mg Alloy by Multi-Axial Alternative Forging, Mater. Trans., 44, 2003, 2288

    Article  CAS  Google Scholar 

  18. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy, Scripta Mater., 42, 2000, 163

    CAS  Google Scholar 

  19. Y. Beygelzimer, D. Orlov, and V. Varyukhin, A New Severe Plastic Deformation Method: Twist Extrusion”, Second Int. Symp. on Ultrafine Grained Materials, Y.T. Zhu et al., Eds., The Minerals, Metals, and Materials Society, Warrendale, PA, 2002, p 297

  20. A. Korbel, W. Bochniak, Refinement and Control of the Metal Structure Elements by Plastic Deformation, Scripta Mater., 51, 2004, 755

    Article  CAS  Google Scholar 

  21. K. Nakamura, K. Neishi, K. Kaneko, M. Nakagaki, Z. Horita, Development of Severe Torsion Straining Process for Rapid Continuous Grain Refinement, Mater. Trans., 45, 2004, 3338

    Article  CAS  Google Scholar 

  22. V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng., A197, 1995, 157

    CAS  Google Scholar 

  23. Y. Saito, H. Utsunomiya, H. Suzuki, T. Sakai, Improvement in the r-Value of Aluminum Strip by a Continuous Shear Deformation Process, Scripta Mater., 42, 2000, 1139

    Article  CAS  Google Scholar 

  24. J.-C. Lee, H.-K. Seok, J.-H. Han, Y.-H. Chung, Controlling the Textures of the Metal Strips via the Continuous Confined Strip Shearing (C2S2) Process, Mater. Res. Bull., 36, 2001, 997

    Article  CAS  Google Scholar 

  25. Spinning, Metals Handbook, 9th ed., vol. 14, Forming and Forging, ASM International, Metals Park, OH, 1988, p 601

  26. Metal Spinning, Tool and Manufacturing Engineers Handbook, 3rd ed., D. B. Dallas, ed., Society for Manufacturing Engineers, Detroit, MI, 1976, 15-162

  27. Flow Forming, Handbook of Metal Forming, K. Lange, ed., Mc-Graw Hill Book Company, New York, NY, 1985, 12.26

  28. S. Kalpakcioglu, On Mechanics of Shear-Spinning, J. Eng. Ind., 82, 1961, 125

    Google Scholar 

  29. B. Avitzur, C.T. Yang, Analysis of Power Spinning of Cones, J. Eng. Ind., 82, 1960, 231

    Google Scholar 

  30. S. Kobayashi, I.K. Hall, E.G. Thomsen, A Theory of Shear Spinning of Cones, J. Eng. Ind., 83, 1961, 485

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Alexander.

Additional information

This article was presented at Materials Science & Technology 2006, Innovations in Metal Forming symposium held in Cincinnati, OH, October 15-19, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, D.J. New Methods for Severe Plastic Deformation Processing. J. of Materi Eng and Perform 16, 360–374 (2007). https://doi.org/10.1007/s11665-007-9054-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9054-y

Keywords

Navigation