Skip to main content
Log in

Development of conducting adhesive materials for microelectronic applications

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrically and/or thermally conducting adhesive materials are classified into two categories depending on their conduction modes: isotropic and anisotropic materials. Silver-particle filled epoxy is the most common example of the class of isotropic materials which are conductive in all directions. This material has been long used in the electronic applications as a die-bonding material, where its good thermal conduction rather than its electrical conduction property is utilized. The silver-filled epoxy material has several limitations for high performance electrical interconnections, such as low electrical conductivity, increase in contact resistance during thermal exposure, low joint strength, corrosion issue due to silver migration, difficulty in rework, and so forth. The anisotropic conducting material provides electrical and/or thermal conduction only in one direction. An anisotropic conducting film (ACF) is used for interconnecting TAB mounted chips to a liquid crystal display panel, where fine pitch interconnection and low temperature assembly are required. In this paper, a brief review of the state-of-art conducting adhesive technology is provided. Subsequently, development of new conducting adhesive materials is presented for several different applications, which include high temperature materials for ceramic substrates, and low temperature materials for organic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Koopman et al., Microelectronics Packaging Handbook, ed. R. Tummala et al. (New York: Van Nostrand Reinhold, 1989), p. 361.

    Google Scholar 

  2. T. Reiley et al., Microelectronics Packaging Handbook, ed. R. Tummala et al. (New York: Van Nostrand Reinhold, 1989), p. 779.

    Google Scholar 

  3. J. Hwang, Solder Joint Reliability, ed. J. Lau (New York: Van Nostrand Reinhold, 1991), p. 38.

    Google Scholar 

  4. G. Schmit et al., Principles of Electronic Packaging, ed. D. Seraphim et al. (New York: McGraw-Hill Book Co., 1989), p. 335.

    Google Scholar 

  5. B.R. Allenby et al., Proc. Surface Mount Int. Conf., vol. 1 (Libertyville, IL: IHS Publishing Group, 1992), p. 1.

    Google Scholar 

  6. S.K. Kang and A. Sarkhel, J. Electron. Mater. 23, 701 (1994).

    CAS  Google Scholar 

  7. H. Steen, Elec. Pack. Prod. December 32 (1994).

  8. H.H. Manko, Elec. Pack. & Prod. February, 70 (1995).

  9. G.P. Ngyuen et al., Circuit Assembly January, 36 (1993).

  10. K. Gilleo, Circuit Assembly January, 50 (1994); February, 109 (1994).

  11. R.F. Saraf et al., Proc. 45th Elec. Comp. Tech. Conf. (New York: IEEE, 1995), p. 1051.

    Book  Google Scholar 

  12. K. Gilleo et al., Elec. Pack. Prod. February, 109 (1994).

  13. C. Gallagher et al., Prod. Surf. Mount Tech. Int. Conf. (Libertyville, IL: IHS Publishing Group, 1995), p. 568.

    Google Scholar 

  14. S.K. Kang et al., Proc. IEEE Int. Symp. on Electronics & the Environment (New York: IEEE, 1995), p. 177.

    Google Scholar 

  15. R. Dietz and D. Peck, Microelectron. Int. (UK) January, 52 (1996).

  16. S.K. Kang, R. Rai, and S. Purushothaman, Proc. 46th ECTC (New York: IEEE, 1996), p. 565.

    Google Scholar 

  17. D. Klosterman, L. Li, and J. Morris, Proc. 46th ECTC (New York: IEEE, 1996), p. 571.

    Google Scholar 

  18. S. Kotthaus et al., IEEE Trans. CPMT, Part A 20, 15 (1997).

    CAS  Google Scholar 

  19. R. Reinke, Proc. 41st Elec. Comp. Tech. Conf. (New York: IEEE, 1991), p. 355.

    Book  Google Scholar 

  20. S. Asai et al., J. Appl. Polymer Sci. 56, 769 (1995).

    Article  CAS  Google Scholar 

  21. K. Adachi, Solid St. Technol. January, 63 (1993).

  22. M.J. Yim et al., Proc. 48th ECTC (New York: IEEE, 1998), p. 1036.

    Google Scholar 

  23. W.S. Huang et al., U.S. Patent 5,062,896 (5 November 1991).

  24. C. Gallagher, G. Matijasevic, and J.F. Maguire, Proc. 47th ECTC (New York: IEEE, 1997), p. 554.

    Google Scholar 

  25. S.K. Kang et al., IEEE Trans. CPMT, Part A 21, 18 (1998).

    CAS  Google Scholar 

  26. Y. Iwasa, Elec. Pack. & Prod. November, 93 (1997).

  27. S.K. Kang and S. Purushothaman, Proc. 48th ECTC (New York: IEEE, 1998), p. 1031.

    Google Scholar 

  28. S.K. Kang and S. Purushothaman, J. Electron. Mater. 27, 1199 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.K., Purushothaman, S. Development of conducting adhesive materials for microelectronic applications. J. Electron. Mater. 28, 1314–1318 (1999). https://doi.org/10.1007/s11664-999-0173-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0173-0

Key words

Navigation