Skip to main content
Log in

Cryogenic thermoelectric cooler with a passive branch

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cryogenic thermoelectric coolers have been fabricated from an active element (polycrystalline Bi0.88Sb0.12) and three different passive elements, a high-Tc superconductor (polycrystalline YBa2Cu3O7-δ), and lengths of high purity copper and aluminum wires. The results for a single couple show that for low, hot junction (sink) temperatures the superconducting element gives rise to maximum temperature drops of 6.6 degrees K at 70K and 7.3 degrees K at 75K in applied magnetic fields of 0.0 and 0.07 T, respectively. Temperature drops of∼9 and 11K, respectively, are expected for such a couple when form factors are taken into account. The copper couple with an applied magnetic field resulted in large cooling δT values at Thot = 150 and 293K, indicating the importance of metallic passive elements for intermediate sink temperatures. Performance curves for the superconductor based cryogenic thermoelectric cooler show promise with further improvement possible by the use of single crystalline Bi0.85Sb0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, (London: Infosearch, 1957).

    Google Scholar 

  2. H.J. Goldsmid, Thermoelectric Refrigeration, (New York: Plenum Press, 1964).

    Google Scholar 

  3. H.J. Goldsmid, K.K. Gopinathan, D.N. Matthews, K.N.R. Taylor and C.A. Baird, J. Phys. D:Appl. Phys. 21, 344 (1988).

    Article  CAS  Google Scholar 

  4. G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).

    Article  CAS  Google Scholar 

  5. R. Wolfe and G.E. Smith, Appl. Phys. Lett. 1, 5 (1962).

    Article  CAS  Google Scholar 

  6. W.M. Yim and A. Amith, Solid-State Electron. 15, 1141 (1972).

    Article  CAS  Google Scholar 

  7. Z.M. Dashevskii, N.A. Sidorenko, N.A. Tsvetkova, C. Ya Skipidarov and A.B. Mosolov, Supercond. Sci. Technol. 5, 690 (1992).

    Article  CAS  Google Scholar 

  8. T. Nakano and J. Hashimoto, Jpn. J. Appl. Phys. 33, L1728 (1994).

    Article  CAS  Google Scholar 

  9. M.G. Fee, Appl. Phys. Lett. 62, 1161 (1993).

    Article  CAS  Google Scholar 

  10. H.J. Trodahl and M.G. Fee, Advances in Superconductivity TV: Proc. 6th Intl. Symp. on Superconductivity (ISS’93), October, 1993, Hiroshima (Springer-Verlag, 1994), p. 1215.

    Google Scholar 

  11. G.K. White, Experimental Techniques in Low-Temperature Physics, (Oxford: Clarendon Press, 1959).

    Google Scholar 

  12. W.M. Yim and F.D. Rosi, Solid-State Electron. 15, 1121 (1972).

    Article  CAS  Google Scholar 

  13. B.M. Suleiman, I. Ul-Haq, E. Karawacki, A. Maqsood and S.E. Gustafsson, Phys. Rev. B 48, 4095 (1993).

    Article  CAS  Google Scholar 

  14. R.A. Richardson, S.D. Peacor, F. Nori and C. Uher, Phys. Rev. Lett. 67, 3856 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mino, C.C., Cochrane, J.W., Volckmann, E.H. et al. Cryogenic thermoelectric cooler with a passive branch. J. Electron. Mater. 26, 915–921 (1997). https://doi.org/10.1007/s11664-997-0274-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0274-6

Key words

Navigation