Skip to main content
Log in

Electrical and optical properties of oxygen doped GaN grown by MOCVD using N2O

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Oxygen doped GaN has been grown by metalorganic chemical vapor deposition using N2O as oxygen dopant source. The layers were deposited on 2″ sapphire substrates from trimethylgallium and especially dried ammonia using nitrogen (N2) as carrier gas. Prior to the growth of the films, an AIN nucleation layer with a thickness of about 300Å was grown using trimethylaluminum. The films were deposited at 1085°C at a growth rate of 1.0 µm/h and showed a specular, mirrorlike surface. Not intentionally doped layers have high resistivity (>20 kW/square). The gas phase concentration of the N2O was varied between 25 and 400 ppm with respect to the total gas volume. The doped layers were n-type with carrier concentrations in the range of 4×1016 cm−3 to 4×1018 cm−3 as measured by Hall effect. The observed carrier concentration increased with increasing N2O concentration. Low temperature photoluminescence experiments performed on the doped layers revealed besides free A and B exciton emission an exciton bound to a shallow donor. With increasing N2O concentration in the gas phase, the intensity of the donor bound exciton increased relative to that of the free excitons. These observations indicate that oxygen behaves as a shallow donor in GaN. This interpretation is supported by covalent radius and electronegativity arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasawa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, 174 (1996).

    Article  Google Scholar 

  2. I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka and M. Koide, Jpn. J. Appl. Phys. (2) 34, L1517 (1995).

  3. H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Article  CAS  Google Scholar 

  4. J.I. Pankove, S. Bloo and G. Harbeke, RCA Rev. 36, 163 (1975).

    CAS  Google Scholar 

  5. O. Lagerstedt and B. Monemar, J. Appl. Phys. 45, 2266 (1974).

    Article  Google Scholar 

  6. J. Karpinski, S. Porowski and J. Jun, J. Cryst. Growth 66, 11 (1984).

    Article  CAS  Google Scholar 

  7. W. Seifert, R. Franzfeld and E. Butter, Crystal Res. Technol. 18, 383 (1983).

    Article  CAS  Google Scholar 

  8. D.W. Jenkins and J.D. Dow, Phys. Rev. B 39, 3317 (1989).

    Article  CAS  Google Scholar 

  9. P. Boguslawski, E. Briggs and J. Bernhold, Proc. 22th Int. Conf. Physics of Semiconductors, (Singapore: World Scientific, 1995), p. 2331.

    Google Scholar 

  10. J. Neugebaur and C.G. van de Walle, Phys. Rev. B 50, 8067 (1994).

    Article  Google Scholar 

  11. J. Neugebaur and C.G. van de Walle, Proc. 22th Int. Conf. Physics of Semiconductors, (Singapore: World Scientific, 1995), p. 2327.

    Google Scholar 

  12. J. Zolper, R.G. Wilson, S.J. Pearton and R.A. Stall, Appl. Phys. Lett. 68, 1945 (1996).

    Article  CAS  Google Scholar 

  13. B.C. Chung and M. Gershenzon, J. Appl. Phys. 72, 651 (1992).

    Article  CAS  Google Scholar 

  14. T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).

    Article  CAS  Google Scholar 

  15. D.M. Hofman, G. Kovalev, G. Steude, B.K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprohm, H. Amano and I. Akasaki, Phys. Rev. B 52, 16072 (1995).

    Google Scholar 

  16. C. Merz, M. Kunzer, U. Kaufmann, I. Akasaki and H. Amano, Semicond. Sci. Technol. 11, 712 (1996).

    Article  CAS  Google Scholar 

  17. R. Niebuhr, K.H. Bachem, M. Maier, C. Hielscher, B. Santic, P. Schlotter and U. Kaufmann (to be published).

  18. G.D. Chen, M. Smith, J.Y. Lin, H.X. Jiang, A. Salvador, B.N. Sverdlov, A. Botchkarv and H. Morkoç, J. Appl. Phys. 79, 2675 (1996).

    Article  CAS  Google Scholar 

  19. J.R. Haynes, Phys. Rev. Lett. 4, 361 (1960).

    Article  CAS  Google Scholar 

  20. P. Hacke, A. Maekawa, N. Koide, K. Hiramatsu and N. Sawaki, Jpn. J. Appl. Phys. 33, 6433 (1994).

    Article  Google Scholar 

  21. P.J. Dean, Deep Centers in Semiconductors, ed. S.T. Pantelides, (Gordon and Breach, 1986).

  22. J.C. Phillips, Bonds and Bands in Semiconductors, (New York: Academic Press, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niebuhr, R., Bachem, K.H., Kaufmann, U. et al. Electrical and optical properties of oxygen doped GaN grown by MOCVD using N2O. J. Electron. Mater. 26, 1127–1130 (1997). https://doi.org/10.1007/s11664-997-0007-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0007-x

Key words

Navigation